Supporting Information

Formamidinium Iodide for Instantaneous and Fluorescent Detection of Pb²⁺ in Water

Md Ashiqur Rahman Laskar^{†, a}, Md Tawabur Rahman^{†, a,b}, Khan Mamun Reza^a, Abdullah Al Maruf^e, Nabin Ghimire^a, Brian Logue^d, Qiquan Qiao^{a, e *}

^aDepartment of Electrical Engineering and Computer Science, South Dakota State University, Brookings, SD 57007, USA

^bDepartment of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh

^cDepartment of Physics, South Dakota State University, Brookings, SD 57007, USA

^dDepartment of Chemistry and Biochemistry, South Dakota State University, Brookings, SD

57Departement of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY 13244, USA

[†]These authors contributed equally

*Email: quqiao@syr.edu, tawabur@eee.kuet.ac.bd

Figure S1. a) FAI powder. b-f) Photographs of FAI after mixing (5:1) with different Pb^{2+} species like PbI_2 , $PbCl_2$, $PbBr_2$, $Pb(SCN)_2$, $Pb(CH_3COO)_2 \cdot 3H_2O$. Here Pb(ATH) stands for Lead (II) Acetate Trihydrate or $Pb(CH_3COO)_2 \cdot 3H_2O$.

Figure S2. UV-Vis absorbance spectra of sensing solutions with different concentrations of Pb²⁺.

0.8M FAI +	0.8M FAI +	0.8M FAI +	0.8M FAI +	0.8M FAI +
1 mM PbI ₂	1 mM PbCl ₂	1 mM PbBr ₂	1 mM Pb(SCN) ₂	1 mM Pb(CH ₃
-	-	-		-COO)2.3H2O

Figure S3. Images of sensing solutions with 1 mM Pb²⁺ from different source compounds.

Figure S4. UV-Vis absorbance spectra of sensing solutions with 1 mM Pb²⁺ from different source compounds.

Figure S5. Images of sensing solutions with different metal ions at $500 \ \mu$ M.

Figure S6. SEM images of a) FAI b) PbI₂.

Figure S7. XRD of FAI and PbI₂.

Figure S8. PL spectra of FAPbI₃ solutions at different FAI concentrations.

Figure S9. PL spectra of FAPbI₃ solutions with tap water samples

Table S1: Electrostatic poter	tial (ESP) of FA ⁺	⁺ under vacuum, DMF	, and water
-------------------------------	-------------------------------	--------------------------------	-------------

Material	Atom	Vacuum (kJ/mol)	DMF (kJ/mol)	Water (kJ/mol)
FA ⁺	N-C-N ^a	735.258	740.369	740.814

^aElectrons are delocalized on the resonance structure of N-C-N

Table S2. Comparison of sensing performance among different Pb²⁺ sensors.

Modifications	LOD (nM)	LDR (nM)	Methods	References
FAPbI ₃ perovskite	100 nM	100 nM - 1 mM	Colorimetric and Fluorometric	This work
CH ₃ NH ₃ PbBr ₃ perovskite	1.6 mM	1.6 - 200 mM	Fluorometric	[1]
AlGaN/GaN	0.0576 nM	0.5 - 20 nM	HEMT	[2]
1T and $2H$ MoS ₂	0.031 nM	-	Electrochemical	[3]

Metal-organic	7.7 pM	-	Fluorometric	[4]
framework (MOF)				
Delonix regia leaf-	3.3 nM	10 - 180 μM	Electrochemical	[5]
derived CQDs				
Ga ₂ O ₃ NPs	84 nM	0.3 - 80 μM	Electrochemical	[6]
TiO ₂ @Gum Arabic-	101.2 nM	5 - 50 nM	Electrochemical	[7]
Carbon Paste Electrode				

HEMT: High electron mobility transistor; MoS2: Molybdenum disulfide; NPs: Nanoparticles;

CQDs: Carbon quantum dots.

References

[1] J. Yan, Y. He, Y. Chen, Y. Zhang, and H. Yan, "CH3NH3Br solution as a novel platform for the selective fluorescence detection of Pb2+ ions," *Sci Rep*, vol. 9, no. 1, p. 15840, 2019.

[2] A. Nigam *et al.*, "Real time detection of Hg2+ ions using MoS2 functionalized AlGaN/GaN high electron mobility transistor for water quality monitoring," *Sens Actuators B Chem*, vol. 309, p. 127832, 2020.

[3] N. Sharma, A. Nigam, S. Bin Dolmanan, A. Gupta, S. Tripathy, and M. Kumar, "1T and 2H heterophase MoS2 for enhanced sensitivity of GaN transistor-based mercury ions sensor," *Nanotechnology*, vol. 33, no. 26, p. 265501, 2022.

[4] S. Venkateswarlu, A. S. Reddy, A. Panda, D. Sarkar, Y. Son, and M. Yoon, "Reversible fluorescence switching of metal–organic framework nanoparticles for use as security ink and detection of Pb2+ ions in aqueous media," *ACS Appl Nano Mater*, vol. 3, no. 4, pp. 3684–3692, 2020.

[5] A. M. Babu, G. Bijoy, P. Keerthana, and A. Varghese, "Fluorescent detection of Pb2+ pollutant in water samples with the help of Delonix regia leaf-derived CQDs," *Synth Met*, vol. 291, p. 117211, 2022.

[6] G. A. El-Fatah, H. S. Magar, R. Y. A. Hassan, R. Mahmoud, A. A. Farghali, and M. E. M. Hassouna, "A novel gallium oxide nanoparticles-based sensor for the simultaneous electrochemical detection of Pb2+, Cd2+ and Hg2+ ions in real water samples," *Sci Rep*, vol. 12, no. 1, p. 20181, 2022.

[7] S. K. Sivan *et al.*, "Fabrication of a Greener TiO2@ Gum arabic-carbon paste electrode for the electrochemical detection of pb2+ ions in plastic toys," *ACS Omega*, vol. 5, no. 39, pp. 25390–25399, 2020.