Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Low-voltage organic single-crystal field-effect transistors and inverters enabled by a solution processable high-*k* dielectric

Chunli Ma,^{‡a} Bin Li,^{‡a} Yihan Zhang,^{‡a} Jiamin Wang,^a Ying Liu,^a Lingjie Sun,^{a,b} Xinzi Tian,^a Jiarong Yao,^a Zhaofeng Wang,^a Shuyu Li,^a Fangxu Yang,^{*a} Rongjin Li,^{*a} and Wenping Hu^{a,b}

^{a.} Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China. E-mail: yangfangxu@tju.edu.cn, lirj@tju.edu.cn.

^{b.} Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.

1. Tables S1 to S3

2. Figures S1 to S14

3. References

1. Table S1 to S3

Ref. ^a	Dielectric	OSC	μ [cm ² V ⁻¹	$\mu_0 \ [m cm^2~V^{-1}]$	Mobility reduction	Ref. ^b
			$s^{-1})]$	$s^{-1})]$		
1	AlO _x /C14 PA	DPA	1.2	34	96.5 %	10
2	TiO _x	Pentacene	0.12	3	96.0 %	11
3	AlO _x	C10-DNTT	1.8	8	98.0 %	12
4	AlO _x /PS	C8-BTBT	3.8	8.7	56.3 %	13
5	ZrTiO _x /PS	Pentacene	0.55	3	81.7 %	11
7	HfO ₂ /COC	PTCDI-C13	0.27	2.1	87.1 %	14
7	HfO ₂ /COC	Pentacene	0.47	3	84.3 %	11
8	HfO ₂ /π-σ PA	Pentacene	0.22	3	92.7 %	11
9	$ZrO_x/P\alpha MS$	Pentacene	0.51	3	83.0 %	11
This work	HAO/ODPA	C6-DPA	3.0	3.16	5.1 %	15

Table S1 Mobility comparison of recently reported low-voltage OFETs based on high-k dielectrics and OTS-modified SiO₂ dielectrics for the same semiconductor, respectively.

^a References based on high-*k* dielectrics.

^b References based on SiO₂ dielectric.

 μ_0 : Comparative mobility, i.e., mobility calculated from OFETs based on OTS/SiO₂ dielectrics

 μ : Mobility calculated from OFETs based on high-k dielectrics

Mobility reduction: $(\mu_0 - \mu)/\mu_0 * 100\%$

				SS	μ	On/Off	D_{it}
Ref.	Dielectric	Method	OSC	[mV	[cm ² V ⁻¹ s ⁻		[×10 ⁻¹¹
				dec^{-1}]	1]	Kano	$eV^{-1}cm^{-2})]$
1	AlO _x /SAM	Anodization	DPA	66	1.2	4×10 ⁶	2.09
2	TiO _x	Sol-Gel	Pentacene	180	0.12	10^{4}	76.1
3	AlO _x	Sol-Gel	C10-DNTT	110	1.8	105	9.65
4	AlO _x /PS	Anodization	C8-BTBT	107	1.53	108	8.78
5	ZrTiO _x /PS	Sol-Gel	Pentacene	510	0.55	10^{4}	52.3
6	HfO ₂ /SAM	Sol-Gel	PDPP2DT-	230	1.16	7×104	114
			T2				
7	HfO ₂ /COC	Sol-Gel	Pentacene	450	0.47	6×10 ₄	45.8
7	HfO ₂ /COC	Sol-Gel	PTCDI-C13	310	0.27	4×10 ₃	36.4
8	HfO ₂ /SAM	Sol-Gel	Pentacene	100	0.22	106	29.7
9	ZrO _x /PaMS	Sol-Gel	Pentacene	260	0.51	1.2×10 ⁵	37.3
This work	HAO/SAM	Sol-Gel	C6-DPA	60	3.0	107	0.181

Table S2 Comparison of electrical characteristics of recently reported low voltage OFETs based on high-k dielectrics.

Ref.	Dialactria	OSC	Operating	Cain
	Dielectric	(p-type, n-type)	voltage (V)	Gain
16	Hf-SAND	PBTOR, P(NDI2OD-T2)	4	38
17	pV3D3	DNTT, PTCDI-C13	5	131
18	HfTiO _x /SAM	Pentacene, PTCDI-C13	3	6
19	AlO _x /SAM	DNTT, PDI-8CN2	3	63
20	TiO ₂ /SAM	DNTT, PDI-8CN2	0.9	62
21	AlO _x /SAM	DPh-BTBT, N1100	1	180
22	HfO ₂ /Polyimide	Pentacene, PTCDI-C13	8	46
23	Parylene-C/PMMA	29-DPP-TVT,P(NDI2OD- T2)	10	13
24	Parylene	diF-TES-ADT:PS,TU- 3:PaMS	10	25
25	AlO _x / PADMA	C ₈ -DNBDT-NW, PhC ₂ - BQQDI	1	66
26	Al ₂ O ₃ /TMSC	Pentacene, C60	4	500
27	C nanoparticles (NPs)/PS	Pentacene, PTCDI-C13H27	1.5	500
28	Ta_2O_5	Pentacene, PTCDI-C13	5	500
29	AlO _x /SAM	DNTT, Compound 8	3	370
This work	HAO/SAM	C6-DPA, TFT-CN	4	172

 Table S3 Comparison of the performances of recently reported organic inverters operating at low voltages.

2. Figure S1 to S14

Fig. S1 (a-d) The annealing of the HAO dielectrics by a "Nitrogen-Air-Nitrogen (NAN)" process.

After spin coating (Fig. S1(a)), a finely designed annealing process was used to optimize the quality of the binary metal oxide dielectric film. First, a low-temperature pre-annealing process was introduced to remove the most solvent, which prevents the volatilization process from affecting the densification process of the film. After this, the film was raised to the annealing temperature in a nitrogen atmosphere within a short of time (30 min) (Fig. S1(b)). Next, the air was deliberately introduced and kept for a while (Fig. S1(c)), then it was changed back to the nitrogen (Fig. S1(d)) and naturally cooled to room temperature. For comparison, another dielectric was prepared, whose annealing process was all carried out in nitrogen.

Fig. S2 (a) FT-IR spectrum of the HAO dielectric prepared by the NAN process with different annealing temperatures. (b) Refractive index of the HAO dielectric processed by the NAN process with different annealing temperatures. (c) Leakage current density of the HAO dielectric processed by the NAN process with different annealing temperatures.

FT-IR data was presented in Fig. S2(a). For the as-spun films, the broad band centered at 3400 cm⁻¹, the shoulder at 1650 cm⁻¹, and the peak at 1590 cm⁻¹ are assigned to O-H stretch vibrations associated with hydroxyl groups, the H-OH bending vibration of adsorbed water in the films, and the M-OH stretching vibration, respectively. M stands for Hf or Al. The CH₃ present in the as-spun film at, 1365 cm⁻¹, is likely from adsorbed solvent and organic ligand in the HAO dielectric layer. These absorption bands were significantly suppressed or eliminated by annealing at 400°C and above. The refractive index of dielectrics was measured by spectroscopic ellipsometry (Fig. S2(b)), and the refractive index can reflect its density. It showed that the film density was improved as the annealing temperature increased, and the HAO dielectric layer annealed at 500°C and 600°C exhibited similar density. The same phenomenon was also shown in the leakage current curves processed by different annealing temperatures (Fig. S2(c)). When the annealing temperature reached 600°C, the leakage current was not further reduced³⁰.

Fig. S3 (a) Hf 4f XPS spectrum of the HAO dielectric treated by NAN process with different annealing temperatures. (b) Al 2p XPS spectrum of the HAO dielectric treated by NAN process with different annealing temperatures.

To obtain more information on chemical bonding states from HAO dielectrics, the evolution of the Hf 4f core-level XPS spectra related to different annealing temperatures were investigated, as shown in Fig. S3. With the increase of annealing temperature, the doublet peaks corresponding to Hf 4f5/2 and Hf 4f7/2 shifted towards higher binding energy sides, indicating the formation of Hf-Al-O. However, When the annealing temperature was increased to 600°C, the binding energy of the Hf 4f peak was detected to shift to the low energy side, which may be due to the decomposition of HfAlO_x and the partial formation of HfO_x. The same trend was also observed for Al 2p core-level XPS spectrum.^{27,28} Thus, 500°C was adopted as the annealing temperature.

Fig. S4 (a) XRD patterns of the HfO_x dielectric at different annealing temperatures. (b) Comparison of the leakage current of the HfO_x and HAO dielectric.

Fig. S5 (a) Al 2p XPS spectrum of the HAO dielectric treated in nitrogen. (b) Comparison of leakage current of HAO dielectric treated by NAN process and treated in nitrogen. (c) Comparison of unitarea capacitance of HAO dielectric treated by NAN process and treated in nitrogen.

Fig. S6 (a) Water contact angles of the bare-HAO surface. (b) Water contact angles of the SAM/HAO surface.

Fig. S7 Cross-section SEM images of the SAM/HAO dielectric.

Fig. S8 Carrier mobility as a function of gate bias. The channel length was 135 μ m, and the channel width was 180 μ m

Fig. S9 (a) Histogram of Vth measured from 30 devices. The channel length was 135 μ m, and the channel width was 180 μ m.

Fig. S10 Hysteresis characteristics of the OFETs based on C6-DPA 2DMCs and SAM/HAO dielectrics. The channel length was 135 μ m, and the channel width was 180 μ m.

Fig. S11 (a) Chemical structure of C6-DPA. (b, c)Typical transfer and output characteristics of the OFETs based on C6-DPA 2DMCs and SAM/HAO dielectrics whose bonding mode is not controlled. The channel length was 55 μ m, and the channel width was 190 μ m.

Fig. S12 (a) Chemical structure of TFT-CN. (b, c) Typical transfer and output characteristics of the OFETs based on TFT-CN 2DMCs and SAM/HAO dielectrics. The channel length was 40 μ m, and the channel width was 200 μ m.

Fig. S13 XRD patterns of 2DMCs of C6-DPA, TFT-CN, and their p-n heterojunctions.

Fig. S14 (a) Typical transfer curves in the p-channel operation mode of the aOFET. (b) Typical transfer curves in the n-channel operation mode of the aOFET. (c) The circuit schematic of the complementary-like inverter based on aOFETs.

3. References

- F. Yang, L. Sun, J. Han, B. Li, X. Yu, X. Zhang, X. Ren, W. Hu, ACS Appl. Mater. Interfaces, 2018, 10, 25871-25877.
- S. Sung, S. Park, W. J. Lee, J. Son, C. H. Kim, Y. Kim, Y. N oh do, M. H. Yoon, ACS Appl. Mater. Interfaces, 2015, 7, 7456-7461.
- 3. Q. Mu, Z. Chen, S. Duan, X. Zhang, X. Ren, W. Hu, Front. Mater., 2020, 7, 570002.
- Y. Xi, T. Wang, Q. Mu, C. Huang, S. Duan, X. Ren, W. Hu, *Mater. Chem. Front.*, 2021, 5, 3236-3245.
- 5. Q. Zhang, G. Xia, W. Xia, J. Z hou, S. Wang, Synth. Met., 2015, 210, 282-287.
- 6. D.-K. Kim, M. Lee, B. Kim, J.-H. Choi, Org. Electron., 2019, 74, 135-143.
- 7. J. D. Oh, J. W. Kim, D. K. Kim, J. H. Choi, Org. Electron., 2016, 30, 131-135.
- Acton, G. Ting, H. Ma, J. W. Ka, H. L. Yip, N. M. Tucker, A. K. Y. Jen, *Adv. Mater.*, 2008, 20, 3697-3701.
- W. He, W. Xu, Q. Peng, C. Liu, G. Zhou, S. Wu, M. Zeng, Z. Zhang, J. Gao, X. Gao, et al., J. of Phys. Chem. C, 2016, 120, 9949-9957.
- J. Liu, H. Zhang, H. Dong, L. Meng, L. Jiang, L. Jiang, Y. Wang, J. Yu, Y. Sun, W. Hu, et al., *Nat. Commun.*, 2015, 6, 10032.
- 11. Y. Ito, A. A. Virkar, S. Mannsfeld, J. H. Oh, M. Toney, J. Locklin, Z. Bao, *J. Am. Chem. Soc.*, 2009, **131**, 9396-9404.
- 12. K. Niimi, M. J. Kang, E. Miyazaki, I. Osaka, K. Takimiya, Org. Lett., 2011, 13, 3430-3433.
- S. Duan, T. Wang, B. Geng, X. Gao, C. Li, J. Zhang, Y. Xi, X. Zhang, X. Ren, W. Hu, *Adv. Mater.*, 2020, **32**, 1908388.
- 14. S. Tatemichi, M. Ichikawa, T. Koyama, Y. Taniguchi, Appl. Phys. Lett., 2006, 89, 112108.
- 15. S. Guo, J. Yao, Y. Wang, L. Zhang, F. Zhai, X. Zhang, Y. Feng, W. Feng, X. Zhang, J. Jie, et al., *J. Mater. Chem. C*, 2021, **9**, 5758-5764.
- S. P. Senanayak, V. K. Sangwan, J. J. McMorrow, K. Everaerts, Z. Chen, A. Facchetti, M. C. Hersam, T. J. Marks, K. S. Narayan, *Adv. Electron. Mater.*, 2015, 1, 1500226.
- H. Seong, J. Choi, B. C. Jang, M. Kim, S. Yoo, S. Y. Choi, S. G. Im, *Adv. Electron. Mater.*, 2016, 2, 1500385.
- J. W. Kim, J. D. Oh, D. K. Kim, H. Y. Lee, Y. G. Ha, J. H. Choi, *J. Mater. Chem. C*, 2016, 4, 7999-8005.
- 19. C. Lu, Z. Ji, G. Xu, N. Lu, L. Li, M. Liu, Org. Electron., 2017, 49, 206-211.
- H. Jinno, T. Yokota, N. Matsuhisa, M. Kaltenbrunner, Y. Tachibana, T. Someya, Org. Electron., 2017, 40, 58-64.

- 21. U. Zschieschang, V. P. Bader, H. Klauk, Org. Electron., 2017, 49, 179-186.
- F. C. Wu, B. L. Yeh, T. H. Chou, J. S. Chen, H. L. Cheng, W. Y. Chou, Org. Electron., 2018, 59, 374-381.
- 23. E. Stucchi, G. Dell'Erba, P. Colpani, Y.-H. Kim, M. Caironi, Adv. Electron. Mater., 2018, 4, 1800340.
- Y. Takeda, Y. Yoshimura, R. Shiwaku, K. Hayasaka, T. Sekine, T. Okamoto, H. Matsui, D. Kumaki, Y. Katayama, S. Tokito, *Adv. Electron. Mater.*, 2018, 4, 1700313.
- T. Sawada, T. Makita, A. Yamamura, M. Sasaki, Y. Yoshimura, T. Hayakawa, T. Okamoto,
 S. Watanabe, S. Kumagai, J. Takeya, *Appl. Phys. Lett.*, 2020, **117**, 033301
- A. Petritz, A. Wolfberger, A. Fian, T. Griesser, M. Irimia-Vladu, B. Stadlober, *Adv. Mater.*, 2015, 27, 7645-7656.
- 27. J. Liu, X. Gao, J. L. Xu, A. Ruotolo, S. D. Wang, *IEEE Electron Device Letters*, 2017, **38**, 1461-1464.
- S. Tatemichi, M. Ichikawa, S. Kato, T. Koyama, Y. Taniguchi, *Phys. Stat. Sol. RRL*, 2008, 2, 47-49.
- S. C. Martens, U. Zschieschang, H. Wadepohl, H. Klauk, L. H. Gade, *Chem. Eur. J.* 2012, 18, 3498-3509.
- J. H. Park, Y. B. Yoo, K. H. Lee, W. S. Jang, J. Y. Oh, S. S. Chae, H. K. Baik, *Appl. Mater. Interfaces*, 2013, 5, 410-417.
- G. He, L. D. Zhang, G. W. Meng, G. H. Li, Q. Fang, J. P. Zhang, J. Appl. Phys., 2007, 102, 094103.
- 32. J. Gao, G. He, M. Liu, J. G. Lv, Z. Q. Sun, C. Y. Zheng, P. Jin, D. Q. Xiao, X. S. Chen, J. Alloys Compd., 2017, 691, 504-513.