Critical Evaluation of the Thermometric Performance of Ratiometric

Luminescence Thermometers based on Ba₃(VO₄)₂:Mn⁵⁺, Nd³⁺ for Deep-

Tissue Thermal Imaging

W. M. Piotrowski^{1*}, R. Marin^{2,3}, M. Szymczak¹, E. Martín Rodríguez^{4,5}, D.

H. Ortgies^{2,3,5}, P. Rodríguez-Sevilla^{2,5}, P. Bolek⁶, M. D. Dramićanin⁷, D.

Jaque^{2,3,5}, L. Marciniak¹*

¹Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw,

Poland

²Nanomaterials for Bioimaging Group (nanoBIG), Departamento de Física de Materiales, Facultad de Ciencias,

Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049 Madrid, Spain

³ Institute for Advanced Research in Chemistry (IAdChem), Campus de Cantoblanco, 28049 Madrid, Spain

⁴Nanomaterials for Bioimaging Group (nanoBIG), Departamento de Física Aplicada, Facultad de Ciencias,

Universidad Autónoma de Madrid, C/ Francisco Tomás y Valiente 7, 28049 Madrid, Spain

⁵ Nanomaterials for Bioimaging Group (nanoBIG), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Ramón y Cajal, Ctra. De Colmenar Viejo km 9.100, 28034 Madrid, Spain

⁶ Faculty of Chemistry, University of Wrocław14 F. Joliot-Curie, Wrocław 50-383, Poland

⁷ Centre of Excellence for Photoconversion, Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, Belgrade 11001, Serbia

* corresponding author: w.piotrowski@intibs.pl, l.marciniak@intibs.pl

KEYWORDS luminescence thermometry, thermal imaging, manganese, neodymium, $Ba_3(VO_4)_2$, NIR spectral range

Figure S1. Representative TEM images of Ba₃(VO₄)₂:0.1% Mn⁵⁺, 5% Nd³⁺ materials.

Figure S2. Particle size distributions for $Ba_3(VO_4)_2:0.1\% Mn^{5+}, 0.1\% Nd^{3+} - a)$ and $Ba_3(VO_4)_2:0.1\% Mn^{5+}, 5\% Nd^{3+}$ powder – b).

Table S1. The elemental analysis of the $Ba_3(VO_4)_2$: 0.1% Mn ⁵⁺ , y% Nd	3+
--	----

		0.1% Mn, 0.1% Nd	0.1% Mn, 0.2% Nd	0.1% Mn, 0.5% Nd	0.1% Mn, 1% Nd	0.1% Mn, 2% Nd	0.1% Mn, 5% Nd
Ba 233.527 {445}	concentration (mg/l)	299.563	294.333	212.391	291.982	285.517	295.093
Ba 230.424 {446}		303.749	295.945	213.635	295.773	289.453	299.646
	Ba content (%)	78.564±0.545	78.469±0.214	78.520±0.229	77.448±0.500	76.805±0.526	74.086±0.567
V 309.311 {109}	concentration (mg/l)	82.839	81.374	57.631	82.138	80.884	85.96
V 292.402 {115}		80.832	79.163	56.22	80.401	79.167	84.202
	V content (%)	21.313±0.261	21.341±0.294	20.984±0.260	21.418±0.229	21.380±0.229	21.197±0.219
Mn 257.610 {131}	concentration (mg/l)	0.114	0.086	0.061	0.084	0.140	0.099
Mn 260.569 {129}		0.121	0.094	0.066	0.089	0.147	0.107
	Mn content (%)	0.031±0.0009	0.024±0.0011	0.023±0.0009	0.023±0.0007	0.038±0.0009	0.026±0.0010
Nd 401.225 {84}	concentration (mg/l)	0.342	0.600	1.253	4.145	6.531	18.483
Nd 406.109 {83}		0.368	0.653	1.316	4.292	6.770	19.177
	Nd content (%)	0.092±0.0034	0.167±0.0070	0.473±0.0116	1.112±0.0194	1.777±0.0319	4.691±0.0865

Figure S3. Thermal evolution of emission spectra of $Ba_3(VO_4)_2$:1% Mn^{5+} , y% Nd^{3+} , where y = 0.1 - a); 0.5 - b); 1 - c); 2 - d); 5 - e); 10 - f).

Figure S4. Thermal evolution of the normalized intensity of Mn^{5+} emission band for $Ba_3(VO_4)_2$: 1% Mn^{5+} , y% Nd^{3+} with different Nd^{3+} concentration.

Figure S5. Thermal evolution of emission spectra of $Ba_3(VO_4)_2$:x% Mn^{5+} , where x = 0.1 - a); 0.2 - b); 0.5 - c);

(1 - d); (2 - e); (5 - f).

Figure S6. Thermal evolution of emission spectra of $Ba_3(VO_4)_2$:0.1% Mn^{5+} , y% Nd^{3+} , where y = 0.1 - a); 0.2 –

b); 0.5 - c); 1 - d); 2 - e); 5 - f).

Figure S7. Emission spectra of Ba₃(VO₄)₂:0.1% Mn⁵⁺, 2% Nd³⁺ with different excitation density $\lambda_{exc} = 808 \text{ nm} - a$) and normalized intensity of Mn⁵⁺ ($\lambda_{em} = 1180 \text{ nm}$) and Nd³⁺ bands ($\lambda_{em} = 1070 \text{ nm}$) in the function of

excitation density -b).

Figure S8. Normalized intensity of Mn^{5+} ($\lambda_{em} = 1180 \text{ nm}$) and Nd^{3+} bands ($\lambda_{em} = 1070 \text{ nm}$) in the function of temperature detected by thermal camera – a) and comparison of LIR values in the function of temperature controlled by Linkam and detected by thermal camera when the samples was heated by laser – b).

Figure S9. The plot of difference between IR camera and LIR temperature readout vs temperature controlled by IR camera.

Figure S10. The schematic presentation of a thermal imaging measurement system based on a ratiometric

approach.

Figure S11. the photo of tissue phantom B with the Ba₃(VO₄)₂:0.1% Mn⁵⁺, 2% Nd³⁺

Figure S12. The maps of intensity obtained with 1200 nm bandpass filter – a) and 1150 nm shortpass filter – b) for $Ba_3(VO_4)_2$:0.1% Mn⁵⁺, 2% Nd³⁺ phosphor through phantom tissue.

Figure S13. Temperature map with induced thermal gradient for Ba₃(VO₄)₂:0.1% Mn⁵⁺, 2% Nd³⁺ phosphor obtained through phantom tissue.

Figure S14. The maps of intensity obtained with 1200 nm bandpass filter – a) and 1150 nm shortpass filter – b) and LIR map – c) for $Ba_3(VO_4)_2$:0.1% Mn⁵⁺, 2% Nd³⁺ phosphor through phantom tissue with 0.1% of Indian ink.