Supporting information for

Fluorinated- and non-fluorinated-diarylamine-Zn(II) and Cu(II) Phthalocyanines as Symmetrical vs Asymmetrical Hole Selective Materials

Adrián Hernández^a, Naveen Harindu Hemasiri^b, Samrana Kazim^{b,c}, Javier Ortiz^a, Shahzada Ahmad^{b,c*} and Ángela Sastre-Santos^{a*}

^a.Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. Universidad S/N, 03202, Elche, Spain.

^{b.}BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain. Email: shahzada.ahmad@bcmaterials.net

^c.IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain

Figure S1. ¹ H-NMR of 1 in CDCl ₃	3
Figure S2. ¹³ C-NMR of 1 in CDCl ₃	3
Figure S3. ¹ H-NMR of 2 in CDCl ₃	4
Figure S4. ¹³ C-NMR of 2 in CDCl ₃	4
Figure S5. ¹ H-NMR of ZnPc-1 in THF-d ₈	5
Figure S6. HR-MALDI-TOF spectrum of ZnPc-1 .	5
Figure S7. Uv-vis absorption spectra of ZnPc-1 in DMF	6
Figure S8. FT-IR of ZnPc-1	6
Figure S9. ¹ H-NMR of ZnPc-2 in THF-d ₈	7
Figure S10. HR-MALDI-TOF spectrum of ZnPc-2 .	7
Figure S11. UV-vis absorption spectra of ZnPc-2 in DMF	8
Figure S12. FT-IR of ZnPc-2	8
Figure S13. HR-MALDI-TOF spectrum of CuPc-3.	9
Figure S14. Uv-vis absorption spectra of CuPc-3 in DMF.	9
Figure S15. FT-IR of CuPc-3.	.10
Figure S16. HR-MALDI-TOF spectrum of CuPc-4.	.10
Figure S17. UV-vis absorption spectra of CuPc-4 in DMF	.11
Figure S18. FT-IR of CuPc-4	.11
Figure S19. ¹ H-NMR of ZnPc-5 in THF-d ₈ .	.12
Figure S20. HR-MALDI-TOF spectrum of ZnPc-5 .	.12
Figure S21. UV-vis absorption spectra of ZnPc-5 in DMF	.13
Figure S22. FT-IR of ZnPc-5	.13
Figure S23. ¹ H-NMR of ZnPc-6 in THF-d _{8.}	.14
Figure S24. HR-MALDI-TOF spectrum of ZnPc-6 .	.14
Figure S25. UV-vis absorption spectra of ZnPc-6 in DMF	.15
Figure S26. FT-IR of ZnPc-6	.15
Figure S27. HR-MALDI-TOF spectrum of CuPc-7.	.16
Figure S28. UV-vis absorption spectra of CuPc-7 in DMF	.16
Figure S29. FT-IR of CuPc-7.	.17
Figure S30. HR-MALDI-TOF spectrum of CuPc-8.	.17
Figure S31. UV-vis absorption spectra of CuPc-8 in DMF	.18
Figure S32. FT-IR of CuPc-8.	.18
Figure S33. ¹ H-NMR assignation of protons for ZnPc -1 (purple), -2 (green), -5 (red), and -6	
(blue)	.19
Figure S34. UV-vis absorption spectra of ZnPc -1 (purple), -2 (green), -5 (red), and -6 (blue)	.19
Figure S35. Normalized UV-vis absorption (solid line) and fluorescence (dotted line) spectra of	of
ZnPc -1 (purple), -2 (green), -5 (red), and -6 (blue)	.20
Figure S36. Cyclic voltammogram of ZnPc -1 (purple), -2 (green), -5 (red), and -6 (blue)	.20
Figure S37. UV-vis absorption spectra of CuPc -3 (purple), -4 (green), -7 (red), and -8 (blue)	.20
Figure S38. Cyclic voltammogram of CuPc -3 (purple), -4 (green), -7 (red), and -8 (blue)	.21
Figure S39. Differential pulse voltammetry of ZnPc-1 in deaerated DMF solution containing	
TBAPF ₆ (0.1 M) obtained at 298 K.	.21
Figure S40. Differential pulse voltammetry of ZnPc-2 in deaerated DMF solution containing	
TBAPF6 (0.1 M) obtained at 298 K	.21
Figure S41. Differential pulse voltammetry of CuPc-3 in deaerated DMF solution containing	
TBAPF6 (0.1 M) obtained at 298 K	.22
Figure S42. Differential pulse voltammetry of CuPc-4 in deaerated DMF solution containing	
TBAPF6 (0.1 M) obtained at 298 K	.22

Figure S43. Differential pulse voltammetry of ZnPc-5 in deaerated DMF solution containing
TBAPF6 (0.1 M) obtained at 298 K
Figure S44. Differential pulse voltammetry of ZnPc-6 in deaerated DMF solution containing
TBAPF6 (0.1 M) obtained at 298 K
Figure S45. Differential pulse voltammetry of CuPc-7 in deaerated DMF solution containing
TBAPF6 (0.1 M) obtained at 298 K23
Figure S46. Differential pulse voltammetry of CuPc-8 in deaerated DMF solution containing
TBAPF6 (0.1 M) obtained at 298 K
Figure S47. Reverse and forward scan J-V curves for PSC based on pristine PTAA as HTM23
Figure S48. Reverse and forward scan J-V curves for PSCs based on symmetrical MPcs, (a) ZnPc-
1, (b) ZnPc-2, (3) CuPc-3, and (4) CuPc-424
Figure S49. Reverse and forward scan J-V curves for PSCs based on symmetrical MPcs, (a) ZnPc-
5, (b) ZnPc-6, (3) CuPc-7, and (4) CuPc-824
Figure S50. Reverse scan J-V curves for p-i-n PSCs based on ZnPc-2, ZnPc-5, and ZnPc-625
Figure S51. Cross-sectional SEM images of FTO/MPc/Ag devices and average thickness of each
MPc
Figure S52 Electrochemical impedance spectra (EIS) of PSCs based on 7pPc-2 (uPc-3 7pPc-5
and 7nPc-6 measured at different bias voltages ranging from 0.85-1.05 V under dark conditions
(raw and fitted data)
Figure S53. The bias voltage-dependent interfacial charge recombination resistance extracted
from Nyquist plots under dark conditions29

Characterization of phthalonitrile 1

ppm

Figure S2. ¹³C-NMR of $\mathbf{1}$ in CDCl₃.

Characterization of phthalonitrile 2

Figure S3. ¹H-NMR of **2** in CDCl₃.

Figure S4. ¹³C-NMR of **2** in CDCl₃.

Characterization of ZnPc-1

Figure S5. ¹H-NMR of **ZnPc-1** in THF-d₈.

Figure S6. HR-MALDI-TOF spectrum of ZnPc-1.

Figure S7. Uv-vis absorption spectra of ZnPc-1 in DMF.

Figure S8. FT-IR of ZnPc-1.

Figure S9. ¹H-NMR of **ZnPc-2** in THF-*d*₈.

Figure S10. HR-MALDI-TOF spectrum of ZnPc-2.

Figure S11. UV-vis absorption spectra of ZnPc-2 in DMF.

Figure S12. FT-IR of ZnPc-2.

Characterization of CuPc-3

Figure S13. HR-MALDI-TOF spectrum of CuPc-3.

Figure S14. Uv-vis absorption spectra of CuPc-3 in DMF.

Figure S15. FT-IR of CuPc-3.

Characterization of CuPc-4

Figure S16. HR-MALDI-TOF spectrum of CuPc-4.

Figure S17. UV-vis absorption spectra of CuPc-4 in DMF.

Figure S18. FT-IR of CuPc-4.

Characterization of ZnPc-5

Figure S19. ¹H-NMR of **ZnPc-5** in THF-*d*₈.

Figure S20. HR-MALDI-TOF spectrum of ZnPc-5.

Figure S21. UV-vis absorption spectra of ZnPc-5 in DMF.

Figure S22. FT-IR of **ZnPc-5**.

Characterization of ZnPc-6

Figure S23. ¹H-NMR of **ZnPc-6** in THF-d₈.

Figure S24. HR-MALDI-TOF spectrum of ZnPc-6.

Figure S25. UV-vis absorption spectra of **ZnPc-6** in DMF.

Figure S26. FT-IR of ZnPc-6.

Characterization of CuPc-7

Figure S27. HR-MALDI-TOF spectrum of CuPc-7.

Figure S28. UV-vis absorption spectra of CuPc-7 in DMF.

Figure S29. FT-IR of CuPc-7.

Characterization of CuPc-8

Figure S30. HR-MALDI-TOF spectrum of CuPc-8.

Figure S31. UV-vis absorption spectra of CuPc-8 in DMF.

Figure S32. FT-IR of CuPc-8.

Figure S33. ¹H-NMR assignation of protons for ZnPc -1 (purple), -2 (green), -5 (red), and -6 (blue).

Figure S34. UV-vis absorption spectra of ZnPc -1 (purple), -2 (green), -5 (red), and -6 (blue).

Figure S35. Normalized UV-vis absorption (solid line) and fluorescence (dotted line) spectra of **ZnPc -1** (purple), **-2** (green), **-5** (red), and **-6** (blue).

Figure S36. Cyclic voltammogram of ZnPc -1 (purple), -2 (green), -5 (red), and -6 (blue).

Figure S37. UV-vis absorption spectra of CuPc -3 (purple), -4 (green), -7 (red), and -8 (blue).

Figure S38. Cyclic voltammogram of CuPc -3 (purple), -4 (green), -7 (red), and -8 (blue).

Electrochemistry

Figure S39. Differential pulse voltammetry of ZnPc-1 in deaerated DMF solution containing TBAPF₆ (0.1 M) obtained at 298 K.

Figure S40. Differential pulse voltammetry of ZnPc-2 in deaerated DMF solution containing TBAPF6 (0.1 M) obtained at 298 K.

Figure S41. Differential pulse voltammetry of CuPc-3 in deaerated DMF solution containing TBAPF6 (0.1 M) obtained at 298 K.

Figure S42. Differential pulse voltammetry of CuPc-4 in deaerated DMF solution containing TBAPF6 (0.1 M) obtained at 298 K.

Figure S43. Differential pulse voltammetry of ZnPc-5 in deaerated DMF solution containing TBAPF6 (0.1 M) obtained at 298 K.

Figure S44. Differential pulse voltammetry of ZnPc-6 in deaerated DMF solution containing TBAPF6 (0.1 M) obtained at 298 K.

Figure S45. Differential pulse voltammetry of CuPc-7 in deaerated DMF solution containing TBAPF6 (0.1 M) obtained at 298 K.

Figure S46. Differential pulse voltammetry of CuPc-8 in deaerated DMF solution containing TBAPF6 (0.1 M) obtained at 298 K.

Figure S47. Reverse and forward scan J-V curves for PSC based on pristine PTAA as HTM.

Figure S48. Reverse and forward scan *J-V* curves for PSCs based on symmetrical MPcs, (a) ZnPc-1, (b) ZnPc-2, (3) CuPc-3, and (4) CuPc-4.

Figure S49. Reverse and forward scan *J-V* curves for PSCs based on symmetrical MPcs, (a) ZnPc-5, (b) ZnPc-6, (3) CuPc-7, and (4) CuPc-8.

HTM	V_{oc} (mV)	J_{sc} (mAcm ⁻²)	FF (%)	PCE (%)	*HI
ZnPc-1	890.54±48.83	17.89 ± 1.08	54.21±8.31	8.59±1.22	0.5058
ZnPc-2	936.01±7.43	20.08 ± 0.29	63.39±1.81	11.92 ± 0.47	0.0750
CuPc-3	962.83±17.17	17.36±1.18	63.38±2.75	10.58 ± 0.68	0.2549
CuPc-4	930.26±15.24	16.66 ± 0.60	60.99±7.36	9.45±1.15	0.1486
ZnPc-5	995.24±5.77	20.01±0.26	69.55±0.89	13.85±0.34	0.0550
ZnPc-6	1011.98 ± 4.04	20.94±0.18	70.03±1.16	14.84 ± 0.37	0.0415
CuPc-7	833.46±58.74	10.98 ± 2.84	50.39±7.59	4.56±1.37	0.3542
CuPc-8	881.8±48.27	15.10±1.58	52.36±8.47	6.96±1.38	0.0773

Table S1. Statistical data of *J-V* parameters of champion devices based on *n-i-p* configuration.

* $HI = [PCE_{RS} - PCE_{FS}]/PCE_{RS}$, where PCE_{RS} and PCE_{FS} represent the PCE from reverse and forward scans, respectively. Statistical distribution was calculated from 8 devices of each ZnPc-1, CuPc-4, CuPc-7, CuPc-8, and 10 devices of each ZnPc-2, CuPc-3, ZnPc-5, ZnPc-6.

Figure S50. J-V curves in the reverse scan for p-i-n devices based on ZnPc-2, ZnPc-5, and ZnPc-6.

Table S2. Performance summary of devices based on p-i-n configuration with ZnPc-2, ZnPc-5, and ZnPc-6.

HTM	V _{oc} (mV)	J _{sc} (mAcm ⁻²)	FF ((%)	PCE (%)	$R_{\rm s}\left(\Omega ight)$	$R_{\rm sh}$ (k Ω)
ZnPc- 2	901.87	16.85	59.59	9.06	98.86	4.379
ZnPc- 5	693.94	13.41	41.74	3.88	300.88	1.880
ZnPc- 6	865.26	15.48	41.28	5.53	311.79	2.604

Table S3. Performance summary of devices based on *p-i-n* configuration with ZnPc-2, ZnPc-5, and ZnPc-6.

HTM	Conductivity (S/cm)	Mobility (cm ² /Vs)
ZnPc-1	4.660 × 10 ⁻⁷	8.994 × 10 ⁻⁶
ZnPc-2	1.210 × 10 ⁻⁶	3.199 × 10 ⁻⁵
CuPc-3	8.121 × 10 ⁻⁷	8.150 × 10 ⁻⁶
CuPc-4	8.024 × 10 ⁻⁷	1.051×10^{-5}
ZnPc-5	1.045 × 10 ⁻⁶	1.949 × 10 ⁻⁵
ZnPc-6	1.268×10^{-6}	2.039 × 10 ⁻⁵

CuPc-7	8.142×10^{-7}	6.335 × 10 ⁻⁵
CuPc-8	7.688 × 10 ⁻⁷	3.434 × 10 ⁻⁵

Figure S51. Cross-sectional SEM images of FTO/MPc/Ag devices and average thickness of each MPc.

Figure S52. Electrochemical impedance spectra (EIS) of PSCs based on ZnPc-2, CuPc-3, ZnPc-5, and ZnPc-6 measured at different bias voltages from 0.85–1.05 V under dark conditions (raw and fitted data).

Figure S53. The bias voltage-dependent interfacial charge recombination resistance extracted from Nyquist plots under dark conditions.