Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Multi-pulse atomic layer deposition of p-type SnO thin films: growth processes and the effect on TFT performance

Daisy Gomersall,*^{*a*} Kham M. Niang,^{*a*} James D. Parish,^{*b*} Zhuotong Sun,^{*c*} Andrew L. Johnson,^{*b*} Judith L. MacManus-Driscoll,^{*c*} and Andrew J. Flewitt^{*a*}

- ^a Electrical Engineering Division, Engineering Department, University of Cambridge, Cambridge CB3 0FA.
 E-mail: daisy.gomersall@cantab.net
- ^b Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY
- ^c Department of Materials Science & Metallurgy, University of Cambridge, Cambridge CB3 0FS

Contents

S1	Summary of Hall measurements for the SnO films	2
S2	Optical properties of SnO films with varying annealing temperatures	2
S3	Optical properties of the SnO films for each deposition mode	2
S4	Comparison of XPS spectra of Sn 3d and O 1s core levels for the three deposition modes	3
S5	Performance of SnO TFTs deposited in single pulse mode	4
S6	Performance of SnO TFTs deposited in 3 x Sn pulse mode	4
S7	Performance of SnO TFTs deposited in exposure mode	4

Tab. S1 Summary of Hall measurements for the SnO films. The films deposited with $1 \times Sn$ pulse and annealed at $250^{\circ}C$ were beyond the limit of the Hall measurement system due to the high resistance of the films.

	Thickness	Annealing temperature	Resistivity	Carrier Concentration	Mobility	Carrier type
	(nm)	(°C)	$(\Omega \mathrm{cm})$	(cm^{-3})	(cm^2/Vs)	
1 x Sn pulse						
	FF	250	-	-	-	-
	55	350	9.5	4.1×10^{17}	3.3	holes
3 x Sn pulse						
	65	250	87.2	6.4×10^{16}	1.4	holes
	05	350	31.1	5.3×10^{16}	3.8	holes
3 x Sn pulse +	- Exposure					
	70	250	28.9	3.7×10^{17}	1.3	holes
	70	350	27.3	2.4×10^{17}	1.2	holes

Fig. S2 Optical properties of SnO films with varying annealing temperatures, showing: (a) transmittance, (b) reflectance and (c) a Tauc plot with extracted band gap energies. The films were deposited using the 3×Sn with exposure mode.

Fig. S3 Optical properties of the SnO films for each deposition mode, showing: (a) transmittance, (b) reflectance and (c) a Tauc plot with extracted band gap energies. The films have all undergone post deposition annealing at 350°C.

Fig. S4 Comparison of XPS spectra of Sn 3d and O 1s core levels for the three deposition modes. XPS was performed *ex-situ*, without any etching of the SnO surface.

Fig. S5 Performance of SnO TFTs deposited in single pulse mode: (a) shows the output curves for V_g from 0 to -50 V; (b) shows the gate transfer curves (I_d) and gate leakage current (I_g , dotted lines) for 3 values of V_d , with the extracted threshold voltage at $V_d = -1$ V (inset).

Fig. S6 Performance of SnO TFTs deposited in 3 Sn pulse mode: (a) shows the output curves for V_g from 0 to -50 V; (b) shows the gate transfer curves (I_d) and gate leakage current (I_g , dotted lines) for 3 values of V_d , with the extracted threshold voltage at $V_d = -1$ V (inset).

Fig. S7 Performance of SnO TFTs deposited in 3×Sn pulse with exposure mode: (a) shows the output curves for V_g from 0 to -50 V; (b) shows the gate transfer curves (I_d) and gate leakage current (I_g , dotted lines) for 3 values of V_d , with the extracted threshold voltage at $V_d = -1V$ (inset).