Electronic Supplementary Information

Vertical organic transistors with permeable base: from fundamentals to performance prediction

Hyuna Lee,^a Kyung-Geun Lim,^{b,*} and Chang-Hyun Kim^{a,*}

^a School of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea

^b Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea.

*Corresponding authors: kglim@kriss.re.kr (K.-G.L.), chang-hyun.kim@gachon.ac.kr (C.-H.K.).

Figure S1. Direct comparison between the transfer curves of the OPBT obtained by simulations with the Boltzmann and the Fermi-Dirac carrier statistics. The device structure and all the input parameters are the same as those that produced the optimized fit to the experimental C_{60} device.

Figure S2. Simulation data showing the direct impact of the value of applied V_{CE} on the transfer characteristics. These results visualize the occurrence of J_C saturation at a voltage point roughly satisfying $V_{CB} = 0$ V.

Figure S3. Simulation data showing the significant impact of the emitter work function (and the corresponding emitter electron-injection barrier E_{bE}) on the transfer characteristics. Each graph contains the doping density variation for the doped C₆₀ region.