Electronic Supplementary Information (ESI)

Near-infrared multiphoton absorption and third harmonic generation with CsPbBr₃ quantum dots embedded in micro-particles of metal-organic frameworks

Qingxin Fan^{#a}, Zhe Yan^{#b}, Hao Zhou^a, Yige Yao^c, Zhenkun Wang^b, Yunan Gao^c, Yilin Wang^a, Shunbin Lu^{*b}, Min Liu^{*a} and Wei Ji^{b,d}

^aSchool of Microelectronics, Shandong Technology Center of Nanodevices and Integration, Shandong University, Jinan 250100, China.

^bInternational Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Institute of Microscale Optoelectronics (IMO), Shenzhen University, Shenzhen 518060, China.

^cState Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China

^dDepartment of Physics, National University of Singapore, Singapore 117551, Singapore

E-mail: liumin@sdu.edu.cn, shunbin_lu@szu.edu.cn

1. Experiment

1.1 materials synthesis

All chemicals were purchased from commercial corporation and used without further purification. Methanol (MeOH, 99.5%), N,N-dimethylformamide (DMF, 99.5%), 2-methylimidazole(2-mim, 98%), Caesium bromide (CsBr, 99.5%) and lead bromide (PbBr₂, 99.9%) were purchased from Macklin. Zinc nitrate hexahydrate (Zn(NO₃)₂ • 6H₂O) was purchased from Alfa Aesar.

Synthesis of ZIF-8. Zn(NO₃)₂·6H₂O (1.78 g, 6 mmol) and 2-mim (0.49 g, 6 mmol) were dissolved in DMF (130 mL). A Teflon-lined stainless-steel autoclave (150 mL) was used as reaction vessel to load mixture. After that, we put it into a programmable oven and heated at a rate of 5 °C min⁻¹ to 140 °C for 24 hours, then followed by cooling naturally to room temperature. After washing three times with DMF, the upper clear layer was washed three times with methanol, the white ZIF-8 crystallites were dried at 80 °C overnight.

Synthesis of CsPbBr₃@ZIF-8. ZIF-8 powder (0.50 g) and CsBr (4.24 g, 20 mmol) were dissolved in MeOH (20 mL) and transferred in the autoclave, the mixture was then stirred at 60 °C for 12 hours to ensure that CsBr was immersed into the cages of ZIF-8. The CsBr@ZIF-8 powder was obtained after washing three times with methanol and dried at 80 °C overnight. CsBr@ZIF-8 (0.50 g) and PbBr₂ (0.36 g, 1 mmol) were put in an agate mortar and grinded for 20 minutes and washed with DMF for three times, then the CsPbBr₃@ZIF-8 powders were obtained. **Synthesis of CsPbBr₃.** With the similar method of CsPbBr₃@ZIF-8, CsBr (0.21 g, 1 mmol) and PbBr₂ (0.36 g, 1 mmol) were put in an agate mortar and grinded for 20 minutes and the CsPbBr₃ powders were obtained.

1.2 Characterization

SEM images, EDS and SEM mapping were obtained using a JSM-6700F. TEM, HRTEM images and HRTEM mapping were obtained using a Talos F200X. XRD patterns were obtained using a SmartLab 9KW. The thermogravimetric analysis was using a TGA5500. XPS spectra was obtained using Thermo Fisher ESCALAB XI+. The PL spectra were obtained using a FluoroMax-4. UV absorption spectra were obtained using a ChirascanV100. B&H SPC-150N TCSPC module was utilized for fluorescence lifetime measurement.

1.3 Multiphoton excitation photoluminescence.

The system consisted of a femtosecond laser (CARBIDE-CB5, Light Conversion Ltd.) and an optical parametric amplification (OPA, Orpheus and Lyra, Light Conversion Ltd.) as the laser source. The emitted laser pulses have a repetition frequency of 60 kHz, wavelength range from 300 to 2600 nm and pulse width of ~216 fs. The laser output beam was divided into two paths by a beam splitter, one path was detected by a power meter as the reference and another path directly entered the microscope (Nikon, ECLIPSE Ti2). In the microscope, the laser was reflected by a dichroic mirror (Thorlabs DMSP950R) and then focused on the sample on X-Y stage by a 20× objective lens (Nikon, NA = 0.45). The fluorescence generated by the sample was collected through the objective lens, and then passing through the dichroic mirror to the bottommost mirror. The reflected fluorescence was focused by a lens, and filtered by a suitable filter (Thorlabs

FESH0750). Finally, the fluorescence signal was collected by the optical fiber, which waveguided it to the detector of a spectrometer (QE Pro, Ocean Optics Ltd.).

2. Analysis results

2.1 Determination of molar concentrations of pure CsPbBr₃

The concentration of pure CsPbBr₃ was determined with the same way as previous reports, which is $C_{pure} = (m_{pure}/M_{pure}) (V_u/V)(1/V_s)$, ^{S1, S2} where C_{pure} , m_{pure} and M_{pure} , and V_s represents the molar concentration, weight, molar mass, and volume of pure CsPbBr₃, respectively, V_u represents the unit cell volume of CsPbBr₃ and V represents the particle volume. Since the substances used were the same, we approximated that the molar concentration ratio be the density ratio. We weighed 350 µL of CsPbBr₃ to obtain a mass of 0.77 g. Substituting the values and comparing with the data in the previous articles result in $C_{pure} = 9.3 \times 10^{-4}$ mol/L.

2.2 Determination of molar concentrations of CsPbBr₃ QDs in ZIF-8

The molar concentration of the CsPbBr₃ QDs encapsulated in ZIF-8 was determined from the results of element mapping. Because Cs⁺ was added first, and then, Pb²⁺ was added during the reaction, there was inevitably an excess of unreacted Cs⁺. We assumed that all Pb²⁺ were derived from the CsPbBr₃ QDs and all Zn²⁺ were derived from the ZIF-8. Therefore, the ration of the number of CsPbBr₃ QD and the numbers of ZIF-8 was n_{Pb}/n_{Zn}. According to the CIF files, we obtained the unit cell volume of ZIF-8 (V_{ZIF}) of 4.905 nm³ and the unit cell volume of ZIF-8 (V_{uCsPbBr3}) of 0.805 nm³. From the HRTEM and TEM images, the shape of CsPbBr₃ can be approximated as a cube and its average length was about 12 nm, and the volume (V_{CsPbBr3}) could

be calculated from this. As such, the molar concentration of the CsPbBr₃@ZIF-8 was calculated to be $C_{CsPbBr_3@ZIF-8} = (n_{Pb} / n_{Zn}) * (V_{u CsPbBr_3} / V_{CsPbBr_3}) * [1 / (N_A * V_{ZIF})] = (8.51 \pm 1.35) \times 10^{-6} \text{ mol/L}.$

2.3 Multiphoton excited photonluminescence (MPEPL) signal

The MEPL signal formula for 2,3,4, or 5 photon absorption (MPA) can be obtained as:

$$F_{2} = \iiint \Delta f_{2} = \alpha \frac{\pi^{3/2}}{8\sqrt{2}(\hbar\omega)^{2}} \tau \phi \eta \sigma_{2} \rho L_{0} w_{0}^{2} I_{00}^{2}$$

$$F_{3} = \iiint \Delta f_{3} = \alpha \frac{\pi^{3/2}}{18\sqrt{3}(\hbar\omega)^{3}} \tau \phi \eta \sigma_{3} \rho L_{0} w_{0}^{2} I_{00}^{3}$$

$$F_4 = \iiint \Delta f_4 = \alpha \frac{\pi^{3/2}}{64(\hbar\omega)^4} \tau \phi \eta \sigma_4 \rho L_0 w_0^2 I_{00}^4$$

$$F_{5} = \iiint \Delta f_{5} = \alpha \frac{\pi^{3/2}}{50\sqrt{5}(\hbar\omega)^{5}} \tau \phi \eta \sigma_{5} \rho L_{0} w_{0}^{2} I_{00}^{5}$$

In these equations, F_n is the *MPA-PL* strength collected by spectrometer, *n* counts for the fact that *n* photons are absorbed; α is the proportion of signal propagate into the collection system; $\hbar\omega$ is the photon energy of the incident laser beam; τ is pulse duration of the Gaussian laser pulse; ϕ is the efficiency of collection system; η is the PL quantum yield; σ_n is the n-photon-absorption cross-section; the product of η and σ_n is multi-photon action cross-section; ρ is the sample molar concentration; L_0 is the effective length of sample; w_0 is the beam waist of laser beam at the focal point; I_{00} is peak intensity of the input pulse at the focus.

To calculate the $\eta \sigma_n$ from the experimental data, we need to firstly obtain the other parameters in the above equations. Here, we set the effective length of sample $L_0 = 2Z_0$, in which Z_0 is the Raleigh length of the objective lens. As above mentioned, the molar concentration of the CsPbBr₃@ZIF-8 can be expressed to be (8.51 \pm 1.35) \times 10⁻⁶ mol/L and the molar concentration of the CsPbBr₃ can be expressed to be 9.3×10^{-4} mol/L. The multiphoton excitation fluorescence ratio method was used to determine the multiphoton absorption cross-section of the sample. Firstly, the two-photon absorption coefficient of pure chalcogenide in the 1000 nm band can be found from the literature as 5 cm/GW. ^{S3} Then, according to the equation: $\sigma_n = (hw)^{n-1}a_n / (2nN_0d_0)$. ⁵⁴ In the equation, $\hbar\omega$ is the photon energy of the incident laser beam; a_n is the multiphoton absorption coefficient; N_0 and d_0 represent the Avogadro constant and the molar concentration of the sample, respectively. We calculate the two-photon action crosssection $\eta \sigma_2$ of CsPbBr₃ wo be 2.7 \times 10⁴ GM. In the calculation process, the fluorescence quantum yield was taken as 60%. The beam waist radius w_0 is proportional to the incident wavelength with $w_0 \approx 0.61 \lambda$ / NA. The actual beam waist radius w_0 can be measured as 3 µm, 3.9 µm, 5.4 µm and 6.6 μm for the lease beam spots at 1000 nm, 1300 nm, 1800 nm and 2200 nm, respectively.

By selection of CsPbBr₃ as reference material, according to the equation: $\eta \sigma_{2MOF} = \frac{F_{2MOF} \cdot \eta \sigma_2 (\rho I_{00}^2) Pure}{F_2 \cdot (\rho I_{00}^2) MOF} , \text{ we calculated the two-photon action cross-section } \eta \sigma_2 \text{ of } CsPbBr_3@ZIF-8 to be (14 ± 3) × 10⁶ GM. As for the determination of multiphoton action cross-sections corresponding to the 1300, 1800, and 2200 nm bands, we compared their MPA-PL signals to the 2MPA-PL signal and employed the above equations to infer the MPA action cross-sections.$

2.4 Third harmonic generation (THG) signal

We observed the THG of CsPbBr₃ and CsPbBr₃@ZIF-8 at 1800 nm and 2200 nm, respectively. We found that their THG signals are almost the same at the same incident intensity, regardless of 1800 nm or 2200 nm. A filter was used in the spectrometer collection to filter out the fluorescence signal. The THG signals from CsPbBr₃, CsPbBr₃@ZIF-8, or, α -quartz powders were measured under the same experimental conditions. We used α -quartz powders as a standard sample, since its $\chi^{(3)}$ values are documented in the literature.

The intensity of the THG signal intensity is approximated as: $F_3 \propto |\chi^{(3)}|^2 I_{\omega}^3 L^2 \frac{\sin^2(\Delta k_q L_q/2)}{(\Delta k_q L_q/2)^2}$, where $\chi^{(3)}$ is the third-order polarizability of the sample, Δk_q is the wavenumber difference between the THG of the sample and the excitation light, and L_q represents the thickness of the sample. By comparing the THG signal from CsPbBr₃, or, CsPbBr₃@ZIF-8 to α -quartz, their $\chi^{(3)}$ were determined.

The $\chi^{(3)}$ of α -quartz reported in many literatures with an average value of $\chi^{(3)} = 2.6 \times 10^{-14}$ esu. ^{S5} At 1800 nm, the third-order nonlinear polarizability $\chi^{(3)}$ of CsPbBr₃ and CsPbBr₃@ZIF-8 was then determined to be 5.14×10^{-12} esu and 8.08×10^{-12} esu, respectively, while, at 2200 nm, the $\chi^{(3)}$ value of CsPbBr₃ and CsPbBr₃@ ZIF-8 was 7.43 $\times 10^{-12}$ esu and 2.02×10^{-11} esu, respectively, see Fig. S5.

Fig. S1 The SEM of (a) ZIF-8 with scale bar of 2 $\mu m,$

(b) CsPbBr_3@ZIF-8 and (c) CsPbBr_3 with scale bar of 5 $\mu m.$

Fig. S2 The high resolution X-ray photoelectron spectra (XPS) of

(a) Cs-3d, (b) Pb-4f, (c) Br-3d, (d) Zn-2p and (e) N-1s.

Fig. S3 The thermogravimetric analysis of CsPbBr₃@ZIF-8.

Fig. S4 (a)The photoluminescence (PL) spectra of CsPbBr₃@ZIF-8, CsPbBr₃, and ZIF-8. The PL decay plots of (b) CsPbBr₃@ZIF-8 and (c) CsPbBr₃ at 405 nm.

Fig. S5 Comparison of THG of CsPbBr₃ (a. At 1800nm, c. At 2200nm) and α -quartz (b. At

1800nm, d. At 2200nm).

References

- S1. H. Wu, L. Yao, W. Cao, Y. Yang, Y. Cui, D. Yang and G. Qian, *J. Mater. Chem. C*, 2022, **10**, 5550-5558.
- H. He, Y. Cui, B. Li, B. Wang, C. Jin, J. Yu, L. Yao, Y. Yang, B. Chen and G. Qian, *Adv. Mater.*, 2019, **31**, 1806897.
- S3. F. O. Saouma, C. C. Stoumpos, M. G. Kanatzidis, Y. S. Kim and J. I. Jang, *J. Phys. Chem. Lett.*, 2017, **8**, 4912-4917.
- S4. F. Zhou, X. Ran, D. Fan, S. Lu and W. Ji, *Adv. Opt. Mater.*, 2021, **9**, 2100292.
- S5. M. Liu, H. S. Quah, S. Wen, Z. Yu, J. J. Vittal and W. Ji, *Chem. Mater.*, 2016, **28**, 3385-3390.