Supporting Information

A binaphthalimide motif as a chiral scaffold for thermally activated delayed fluorescence with circularly polarized luminescence activity.

Yugo Tsuji^a‡, Natsuko Kanno^b‡, Chigusa Goto^a, Shohei Katao^a, Yasuo Okajima^a, Pablo Reine^a, Paulius Imbrasas^c, Sebastian Reineke^c, Katsuyuki Shizu^b, Takuya Nakashima^a, Hironori Kaji^b, Tsuyoshi Kawai^a*, Marine Louis^a*.

Table of Contents

NMR Spectra	S3–11
Figure S1: Nitration Crude NMR	S12
Figure S2: DM Thermogravimetry	S13
Table S1: DFT and TD-DFT calculation results of M and DM	S13
Figure S3: Hirshfield surface and Fingerprints plots of M	S14
Figure S4: Chiral separation DM enantiomers	S15
Figure S5: Fingerprint plots of DM calculated from Hirshfeld surface analysis.	S16
Table S2: Crystallographic parameters and refinements details for achiral M and R enantiomer DM	S17
Figure S6: Solvatochromism	S18
Figure S7-8: Photophysical Decays	S19-S20
Figure S9: Relaxed ground state geometries of M and DM from DFT calculations with donor- acceptor dihedral angles (θ_{AD}) indicated in light blue.	S21
Figure S10: Low temperature measurements of DM in toluene	\$21
Figure S11: Non-normalized emission and CPL spectra of DM in meTHF at 77K	S22
Figure S12: g _{lum} values of DM at room temperature in toluene and in MeTHF at 77K	S22
Table S3: Calculations of DM electric transition dipole moments	S23
Figure S13: Powder X-ray Diffraction	S23
Figure S14: Emission of THF/water solutions	S24
Figure S15: DM solution in THF/water (10/90) and THF: absorption, CD and gabs spectra	S25
Figure S16: g _{lum} values of DM suspension in THF/water (10/90)	S26
Figure S17: R fibres CPL spectra before and after smearing	S26
Figure S18: g _{lum} values of DM fibers (<i>R</i> and <i>S</i>) and of <i>R</i> fibres after smearing.	S27
Figure S19: HPLC profile of DM <i>S</i> enantiomer in THF before and after heating in THF at 60° for 1 hour.	S27

NMR Spectra

¹H NMR

¹³C NMR

¹H NMR (2A)

 $^{13}CNMR(2A)$

¹³C NMR

¹H NMR

¹³C NMR

. 1985

6.998

. 8695

¹H NMR

¹³C NMR

¹H NMR

¹³C NMR

Nitration crude NMR

Figure S1: Crude NMR of the mixture obtained after nitration.

Thermogravimetry

Figure S2: Thermogravimetric analysis of DM. The blue line indicates the point at which 5% of weight loss is observed, which happens at 372°C.

DFT and TD-DFT calculation results of M and DM

Table S1: The excitation energies of S₁, T₁ and T₂ state and ΔE_{ST} calculated at the TD-CAM-B3LYP/6-31G(d) level. Geometry optimization of the ground-state was performed at the CAM-B3LYP/6-31G(d).

Compound	S ₁ (eV)	T ₁ (eV)	T ₂ (eV)	$\Delta E_{\rm ST}$ (eV)
M	3.480	2.210	3.092	1.270
DM	3.199	2.048	2.239	1.151

O-H interactions: 9.6%

di 1.8 2.0 2.2 2.4 2.6 2.8

0.6

2.8 26 22 20 1.8 1.6 1.4 1.2 1.0

1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

0.8

0.6

C-H interactions: 12.0%

Figure S3: Hirshfield surface and Fingerprints plots of M generated by Crystal Explorer.

Chiral Separation

Figure S4: CD and UV signal from Chiral HPLC analysis. Top: Racemic mixture. Bottom: After separation, enantiomers S (left) and R (right) were successfully isolated.

Figure S5: Fingerprint plots of DM calculated from Hirshfeld surface analysis highlighting different types of interactions.

Crystallography Analysis

Table S2: Crystallographic parameters and refinements details for achiral **M** and R enantiomer of **DM**(CCDC: 2237859 and 2237866)

Compound	Monomer M	Dimer DM
Recrystallization method	Slow evaporation of a mixture	Slow diffusion of hexane in a
	of 50/50 DCM/Methanol	concentration solution of
		compound in chloroform
CCDC	2237859	2237866
Empirical formula	C32 H30 N2 O2	C64 H58 N4 O4
Crystal size, mm ³	Х	0.2 x 0.09 x 0.02
Crystal system	Triclinic	monoclinic
Space group	P ¹ (2)	P21
a, Å	7.965(3)	13.8682(4)
b, Å	13.578(6)	30.7989(9)
c, Å	23.645(10)	19.9110(5)
α, °	83.988(6)	90.000
β, °	84.232(7)	109.9290(17)
γ, °	81.323(6)	90.000
Cell volume, Å3	2504.66(18)	7995.2(4)
Z ; Z'	4 ; 2	2;1
Т, К	103.15	103,15
ho calcd (g cm ⁻³)	1.258	1.216
Radiation type ; wavelength Å	Mo ; 0.71075	Mo ; 0.71075
F ₀₀₀	1008	3112
μ, mm ^{−1}	0.078	0.076
θ range, °	2.187 - 25.350	2.187 - 25.351
Reflections unique	0.1311 (4640)	0.0728 (16222)
wR2 (all data)	0.3926 (9134)	0.1939 (29230)

Solvatochromism

Figure S6: Solvatochromic measurements of (**A**) **M** and (**B**) **DM** in cyclohexane (violet), toluene (blue), tetrahydrofurane (THF), chloroform (orange) and acetone (red). Absorption in full line and Emission in dotted line. The absorption of **DM** in cyclohexane is not shown. The compound never really dissolved creating small aggregates and no clean absorption spectra has been obtained. λ_{exc} = 350 nm.

Photophysical Decays

Figure S7: Fluorescence decays and residues of AlkylHalf measured in toluene in air (Left) and argon (Right) with χ^2 values of 1.14 and 1.07 respectively. λ_{exc} = 400 nm.

Figure S8: A. DM decays recorded in toluene solution (black) and in PMMA films (green) along with fitting curves and lifetimes values. **B**. DM absorption (full line), emission (dotted line) and excitation (dotted pale line) spectra in toluene (black) and in PMMA 10 wt% (green).

Figure S9: Relaxed ground state geometries of M and DM from DFT calculations with donor-acceptor dihedral angles (θ_{AD}) indicated in light blue.

Low temperature measurements

Toluene

Figure S10: Emission spectra obtained for **DM** in cryostat at 77 K in toluene (C=50 μ M). Direct emission in yellow and 75 ms delayed emission in red, revealing highly structured phosphorescence emission.

Figure S11: (a) Non-normalized emission spectra obtained for **DM** in cryostat at 77 K in MeTHF **(b)** Non-normalized CPL at 77 K under 375 nm excitation in MeTHF. (C= 50 mM, λ_{exc} =350 nm).

Figu

re S12: Representation of g_{lum} value as function of the wavelength for **DM (a)** at room temperature in toluene **(b)** at 77 K in MeTHF. (C= 50 mM, λ_{exc} =350 nm).

Alkyl dimer	μ (M _s = 0) ^a	μ (M _s = 1) ^a	μ (M _s = -1) ^a		
$S_1 \rightarrow S_0$	0.269				
$S_2 \rightarrow S_0$	0.766				
$T_1 \rightarrow S_0$	2.10×10 ⁻⁴	2.81×10 ⁻⁴	2.81×10 ⁻⁴		
$T_2 \rightarrow S_0$	3.46×10 ⁻⁴	1.98×10 ⁻⁴	1.98×10 ⁻⁴		

Table S3: Calculations of **DM** electric transition dipole moments for the $S_1 \rightarrow S_0$, $S_2 \rightarrow S_0$, $T_1 \rightarrow S_0$, $T_2 \rightarrow S_0$ respectively. ^a All values are in atomic units (a.u.)

These values were obtained with the following method: TD-B3LYP/6-31G(d)//B3LYP/6-31G(d) and PCM model (solvent = toluene).

Figure S13: PXRD obtained from the yellow powder (YP) and orange powder (OP).

Figure S14: Emission of THF/H₂O solutions with their respective maximum. λ_{exc} =350 nm.

Figure S15: Top: Absorption spectra of *S* (dotted line) and *R* (full line) enantiomer in THF and THF/Water (10/90) respectively in orange and yellow. **Middle:** Enantiomers CD spectra. **Bottom:** *R* and *S* calculated gabs.

Figure S16: THF/water 90/10 g_{lum} value as function of the wavelength.

Fig. S17: (a) Emission spectra obtained for enantiopure *R* gel fibres before and after smearing with a spatula. (b) CPL spectra obtained from the *R* fibres before and after smearing.

Fig. S18: g_{lum} values in function of wavelength (a) for enantiopure *S* fibres (b) for enantiopure *R* fibres (c) for *R* fibres after smearing.

Figure S19: Racemization study of DM S enantiomer: the pure enantiomer was put through chiral

HPLC before and after heating at 60 degrees for 1 hour in THF.