Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supplementary data

Tailoring photodetection performance of self-powered Ga₂O₃ UV solar-blind

photodetectors through asymmetric electrodes

Keyun Gu¹, Zilong Zhang^{2, *}, Haofei Huang¹, Ke Tang¹, Jian Huang^{1,3, *}, Meiyong Liao²,

Linjun Wang^{1,3}

¹ School of Materials Science and Engineering, Shanghai University, Shanghai 200444, PR

China

² Research Center for Functional Materials, National Institute for Materials Science (NIMS),

Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan

³ Zhejiang Institute of Advanced Materials, SHU, Jiashan 314113, PR China

Correspondence should be addressed to Zilong Zhang (zlzhang16@hotmail.com or

ZHANG.Zilong@nims.go.jp),

Jian Huang (jianhuang@shu.edu.cn).

1. Transient photo-response of the self-powered UV photodetectors kept in the atmosphere for two months.

Fig. S1. Transient response of the amorphous Ga_2O_3 thin film photodetectors measured after placed in an atmospheric environment for two months (a) Asymmetric-electrode-size photodetector Au/Ti/Ga₂O₃/Ti/Au and Asymmetric-electrode-material photodetector (b) Au/Ti/Ga₂O₃/GZO (c) Au/Ti/Ga₂O₃/Au

The self-powered photodetectors were kept in the atmosphere. Fig. S1 shows the transient response performances of the amorphous Ga_2O_3 thin film photodetectors exposed to the atmosphere for two months. The current increased and decreased with the light turn on and off. It shows that these detectors have high-stability and high-repeatability of detection performances. All the self-powered detectors fabricated in this work show a promising potential to be applied in the long-time working applications in the harsh environment.

2. Calculation of the Schottky barrier heights of an asymmetric-electrode-size photodetector between electrodes and Ga₂O₃ thin films.

Fig. S2. The fitting of the linear region of the ln(J)-V characteristics for an asymmetricelectrode-size photodetector. (a) Reverse voltage; (b) Forward voltage

The two-side Schottky barrier height of an asymmetric-electrode-size photodetector can be calculated as

$$J_s = A^* T^2 \exp(-q\varphi_B / kT) \tag{1}$$

where J_s is the saturation current density of the device, k is Boltzmann's constant, T is the evaluated temperature, and e is the electron charge. The $\ln J_s$ can be obtained through the intercept of tangent line of each $\ln J$ -V curve, as shown in Fig. S2. Based on the Eq. (1), the $q\Phi_{BH} = (k_BT)[\ln T^2A^*-\ln J_s]$. Thus, the $q\Phi_{BH}$ of Ga₂O₃ with left and right electrodes are calculated as values of 0.880 eV and 0.879 eV, respectively, indicating the heights of the Schottky barrier on both sides are almost equal.

3. Calculation of the Schottky barrier heights of asymmetric-electrode-material photodetectors between two-side metal electrode and Ga₂O₃ thin film.

Fig. S3. The fitting of the linear region of the $\ln(J)-V$ characteristics for the Au/Ti/Ga₂O₃/GZO photodetector and the Au/Ti/Ga₂O₃/Au photodetector. (a) and (c) Reverse voltage; (b) and (d) Forward voltage.

Based on the Eq. (1), the $q\Phi_{B1}$ between the Ga₂O₃ and the Au/Ti, the $q\Phi_{B2}$ between the Ga₂O₃ and the GZO, and the $q\Phi_{B3}$ between the Ga₂O₃ and the Au are calculated as values of 0.880 eV, 0.863 eV and 0.898 eV, respectively.