Supplementary Information

High-quality SiN_x Thin Film Growth at 300 °C Using Atomic Layer Deposition with Hollow Cathode Plasma

Jae Chan Park,^{a,†} Dae Hyun Kim,^{a,b,†} Tae Jun Seok,^{a,c} Dae Woong Kim,^{a,d} Ji-Hoon Ahn,^a Woo-Hee Kim,^{*,a} and Tae Joo Park^{*,a}

^aDepartment of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea

^bRevolutionary Technology Center, SK Hynix, Icheon 17336, Republic of Korea

^cFoundry Business, Samsung Electronics, Hwasung 18448, Republic of Korea

^dAdvanced Materials Research Team, Hyundai Motor Company, Uiwang 16082, Republic of Korea

[†]These authors contributed equally to this work.

*E-mail: tjp@hanyang.ac.kr; wooheekim@hanyang.ac.kr

Fig. S1 (a) ALD process recipe for the SiN_x film using DIPAS and N₂ or NH₃ HCP. Growth-saturated condition was obtained with (b) DIPAS precursor feeding time of 1 s and (c) plasma pulse time of 40 s.

Fig. S2 (a) Change in thickness of the surface nitride layer grown using N_2 or NH_3 HCP on Si substrate as a function of plasma exposure time. (b) N 1*s* core level XPS spectra of the surface nitride layer.

Fig. S3 Al 2p core level XPS spectra of all SiN_x films.

Journal Name

Fig. S4 O 1*s* core level XPS spectra of the SiN_x films grown using (a) ICP N₂, (b) ICP NH₃, (c) HCP N₂ and (d) HCP NH₃ process, respectively. Each deconvoluted spectrum indicates the Al–O or Si–O bonding. (e) The O/Si ratio of the each SiN_x films calculated using the peak areas.

ARTICLE