Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

## **Supporting Information**

Antimony doped Tin (IV) hybrid metal halides with high efficiency tunable emission, WLED and information encryption Wenchao Lin,<sup>a</sup> Qilin Wei,<sup>a</sup> Tao Huang,<sup>a</sup>, Xianfu Meng,<sup>a</sup> Ye Tian,<sup>a</sup> Hui Peng,<sup>a</sup>,\* Bingsuo zou <sup>a</sup>,\*

<sup>a</sup> State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures; School of Resources, Environments and Materials, Guangxi University, Nanning 530004, China.

\* Corresponding author: Bingsuo Zou, Hui Peng

| •                                           |                                                       |
|---------------------------------------------|-------------------------------------------------------|
| Identification code                         | 220826H2_autored                                      |
| Empirical formula                           | $\mathrm{C_{26}H_{60}Cl_6N_2Sn}$                      |
| Formula weight                              | 732.15                                                |
| Temperature/K                               | 296.15(10)                                            |
| Crystal system                              | triclinic                                             |
| Space group                                 | P-1                                                   |
| a/Å                                         | 9.8400(6)                                             |
| b/Å                                         | 10.8858(7)                                            |
| c/Å                                         | 18.0546(9)                                            |
| α/°                                         | 105.944(5)                                            |
| β/°                                         | 97.101(5)                                             |
| $\gamma/^{\circ}$                           | 91.271(5)                                             |
| Volume/Å <sup>3</sup>                       | 1842.08(19)                                           |
| Z                                           | 2                                                     |
| $\rho_{calc}g/cm^3$                         | 1.320                                                 |
| µ/mm <sup>-1</sup>                          | 1.146                                                 |
| F(000)                                      | 764.0                                                 |
| Crystal size/mm <sup>3</sup>                |                                                       |
| Radiation                                   | Mo K $\alpha$ ( $\lambda = 0.71073$ )                 |
| 20 range for data collection                | 4.178 to 60.838                                       |
| Index ranges                                | $-12 \le h \le 13, -9 \le k \le 15, -25 \le l \le 16$ |
| Reflections collected                       | 11745                                                 |
| Independent reflections                     | 8721 [ $R_{int} = 0.0138, R_{sigma} = 0.0293$ ]       |
| Data/restraints/parameters                  | 8721/8/362                                            |
| Goodness-of-fit on F <sup>2</sup>           | 1.020                                                 |
| Final R indexes [I>= $2\sigma$ (I)]         | $R_1 = 0.0500, wR_2 = 0.1184$                         |
| Final R indexes [all data]                  | $R_1 = 0.0726, wR_2 = 0.1298$                         |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.63/-0.97                                            |

**Table S1.** Crystal data and structure refinement for  $(C_{13}H_{30}N)_2SnCl_6$  single crystal at 296 K.

|      | (15 50 )2 0 04 |            | 6         |           |
|------|----------------|------------|-----------|-----------|
| Atom | x              | У          | Z         | U(eq)     |
| Sn1  | 2540.1(2)      | 3411.9(2)  | 7140.8(2) | 50.77(10) |
| Cl1  | 721.8(10)      | 4645.9(11) | 6695.9(7) | 70.7(3)   |
| Cl2  | 2267.0(16)     | 1929.8(13) | 5846.6(8) | 94.8(4)   |
| C13  | 839.8(12)      | 2108.5(12) | 7493.1(9) | 88.6(4)   |
| Cl4  | 4231.6(11)     | 4679.1(12) | 6759.6(8) | 82.3(3)   |
| C15  | 2742.6(14)     | 4916.1(13) | 8422.1(7) | 88.3(4)   |
| Cl6  | 4332.8(11)     | 2191.0(12) | 7580.1(8) | 82.4(3)   |
| N1   | 7969(3)        | 4815(4)    | 8480(2)   | 73.4(10)  |
| C2   | 9703(8)        | 7815(7)    | 8192(5)   | 141(3)    |
| C3   | 6188(12)       | 8155(9)    | 10469(7)  | 214(5)    |
| C5   | 9312(11)       | 8747(10)   | 7793(6)   | 191(4)    |
| C7   | 8627(9)        | 2104(7)    | 9472(5)   | 144(3)    |
| С9   | 7021(7)        | 6273(8)    | 9627(4)   | 145(3)    |
| C10  | 9028(5)        | 5820(5)    | 8475(3)   | 88.7(15)  |
| C14  | 7527(5)        | 4026(5)    | 7655(3)   | 87.1(15)  |
| C18  | 8680(5)        | 3979(5)    | 8936(3)   | 87.3(15)  |
| C19  | 7832(11)       | 1043(9)    | 9623(6)   | 186(4)    |
| C20  | 6706(5)        | 5380(5)    | 8822(3)   | 85.4(14)  |
| C21  | 5838(9)        | 6941(8)    | 9925(5)   | 158(3)    |
| C22  | 8560(6)        | 6787(6)    | 8064(4)   | 106.9(19) |
| C24  | 7804(7)        | 2880(6)    | 9024(4)   | 106.8(18) |
| N2   | 2080(4)        | 7859(4)    | 5640(2)   | 75.4(10)  |
| C1   | 2776(4)        | 5651(4)    | 4916(3)   | 71.0(11)  |
| C4   | 1636(4)        | 6501(4)    | 5194(3)   | 71.7(11)  |
| C6   | 2236(6)        | 8576(5)    | 4440(3)   | 94.0(16)  |
| C8   | 2206(5)        | 4307(5)    | 4543(3)   | 83.5(13)  |
| C11  | 3163(14)       | 8943(10)   | 7012(6)   | 114(4)    |
| C12  | 2914(5)        | 8499(5)    | 5200(3)   | 84.1(14)  |
| C13  | 2828(10)       | 7639(8)    | 6412(5)   | 68(2)     |
| C15  | 3343(8)        | 9227(7)    | 4083(4)   | 125(2)    |
| C16  | 810(5)         | 8578(6)    | 5811(3)   | 95.9(16)  |
| C17  | 2741(9)        | 9586(7)    | 3432(5)   | 142(3)    |
| C23  | 5067(15)       | 8470(20)   | 7874(11)  | 193(9)    |
| C25  | 3639(16)       | 8704(15)   | 7812(7)   | 127(5)    |
| C26  | 3312(6)        | 3410(5)    | 4249(4)   | 103.2(17) |
| C25A | 3830(30)       | 8320(20)   | 8291(13)  | 164(11)   |
| C23A | 4350(20)       | 8510(20)   | 7615(9)   | 119(8)    |
| C11A | 2958(19)       | 8040(20)   | 7045(10)  | 134(9)    |
| C13A | 3209(15)       | 8372(17)   | 6357(8)   | 93(5)     |

**Table S2**. Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters (Å2×103) for  $(C_{13}H_{30}N)_2SnCl_6$ . U<sub>eq</sub> is defined as 1/3 of the trace of the orthogonalised U<sub>IJ</sub> tensor.

|      | -               |                 | -               |                 | -               |                 |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Atom | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>23</sub> | U <sub>13</sub> | U <sub>12</sub> |
| Sn1  | 42.85(14)       | 45.62(14)       | 62.38(17)       | 15.71(11)       | 0.79(10)        | -0.89(9)        |
| C11  | 57.4(5)         | 76.2(7)         | 79.9(7)         | 28.5(5)         | -1.9(5)         | 14.9(5)         |
| Cl2  | 108.8(10)       | 74.4(7)         | 81.7(8)         | -7.7(6)         | 5.6(7)          | 5.9(7)          |
| C13  | 63.6(6)         | 77.9(7)         | 135.2(11)       | 42.7(7)         | 27.4(7)         | -6.3(5)         |
| Cl4  | 61.0(6)         | 83.4(7)         | 118.4(9)        | 57.0(7)         | 9.2(6)          | -6.6(5)         |
| C15  | 87.8(8)         | 91.1(8)         | 68.0(7)         | 0.0(6)          | -7.9(6)         | 8.6(7)          |
| C16  | 59.3(6)         | 78.4(7)         | 126.0(10)       | 55.8(7)         | 10.9(6)         | 15.6(5)         |
| N1   | 50.2(18)        | 94(3)           | 63(2)           | 3.4(19)         | 0.5(15)         | -0.3(18)        |
| C2   | 146(7)          | 116(6)          | 170(7)          | 48(5)           | 40(6)           | -13(5)          |
| C3   | 241(13)         | 130(8)          | 249(12)         | 0(8)            | 73(10)          | 10(8)           |
| C5   | 234(12)         | 176(9)          | 198(10)         | 81(8)           | 100(9)          | 15(8)           |
| C7   | 152(7)          | 115(6)          | 151(7)          | 41(5)           | -34(5)          | -17(5)          |
| С9   | 110(5)          | 183(8)          | 102(5)          | -33(5)          | 31(4)           | 17(5)           |
| C10  | 62(3)           | 94(4)           | 98(4)           | 8(3)            | 10(3)           | -8(2)           |
| C14  | 64(3)           | 110(4)          | 68(3)           | -2(3)           | -1(2)           | -3(3)           |
| C18  | 69(3)           | 98(4)           | 78(3)           | 7(3)            | -11(2)          | 4(3)            |
| C19  | 235(12)         | 164(9)          | 169(8)          | 80(7)           | -4(8)           | 7(8)            |
| C20  | 61(3)           | 104(4)          | 88(3)           | 16(3)           | 19(2)           | 12(2)           |
| C21  | 153(7)          | 159(7)          | 125(6)          | -35(5)          | 48(5)           | 20(6)           |
| C22  | 95(4)           | 113(5)          | 113(4)          | 22(4)           | 37(4)           | 3(4)            |
| C24  | 103(4)          | 123(5)          | 91(4)           | 32(4)           | -6(3)           | -3(4)           |
| N2   | 61(2)           | 98(3)           | 60(2)           | 12(2)           | 2.6(16)         | 14.9(19)        |
| C1   | 61(2)           | 78(3)           | 82(3)           | 32(2)           | 13(2)           | 6(2)            |
| C4   | 61(2)           | 86(3)           | 74(3)           | 33(2)           | 8(2)            | 5(2)            |
| C6   | 110(4)          | 74(3)           | 106(4)          | 26(3)           | 39(3)           | 7(3)            |
| C8   | 67(3)           | 79(3)           | 113(4)          | 43(3)           | 7(3)            | 5(2)            |

**Table S3.** Anisotropic Displacement Parameters (Å<sup>2</sup>×10<sup>3</sup>) for (C<sub>13</sub>H<sub>30</sub>N)<sub>2</sub>SnCl<sub>6</sub>. The Anisotropicdisplacement factor exponent takes the form:  $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$ .

| C11  | 179(12) | 72(6)   | 70(6)   | 5(5)    | -31(6)  | 18(7)   |
|------|---------|---------|---------|---------|---------|---------|
| C12  | 73(3)   | 67(3)   | 97(4)   | 0(3)    | 11(3)   | -6(2)   |
| C13  | 88(5)   | 55(4)   | 57(5)   | 23(4)   | -10(4)  | -5(4)   |
| C15  | 153(7)  | 117(5)  | 111(5)  | 38(4)   | 25(5)   | 9(5)    |
| C16  | 85(3)   | 120(4)  | 86(3)   | 27(3)   | 21(3)   | 34(3)   |
| C17  | 167(8)  | 100(5)  | 166(7)  | 39(5)   | 53(6)   | -1(5)   |
| C23  | 133(14) | 260(20) | 192(19) | 109(17) | -37(13) | -31(15) |
| C25  | 175(17) | 120(10) | 64(9)   | 0(7)    | -9(9)   | 5(10)   |
| C26  | 84(4)   | 85(4)   | 138(5)  | 26(3)   | 17(3)   | 14(3)   |
| C25A | 210(30) | 141(18) | 135(19) | 54(15)  | -40(18) | -42(17) |
| C23A | 106(16) | 176(19) | 48(9)   | -13(10) | -2(9)   | 47(15)  |
| C11A | 180(20) | 151(19) | 82(13)  | 49(13)  | 24(12)  | 86(17)  |
| C13A | 85(9)   | 83(11)  | 94(11)  | 5(9)    | -8(7)   | -1(8)   |

Table S4. Bond Lengths for  $(C_{13}H_{30}N)_2SnCl_6$ .

| Atom | Atom | Length/Å   | Atom | Atom | Length/Å  |
|------|------|------------|------|------|-----------|
| Sn1  | Cl1  | 2.4485(10) | C18  | C24  | 1.514(8)  |
| Sn1  | Cl2  | 2.4269(12) | N2   | C4   | 1.502(6)  |
| Sn1  | C13  | 2.4229(11) | N2   | C12  | 1.493(6)  |
| Sn1  | Cl4  | 2.4187(11) | N2   | C13  | 1.575(8)  |
| Sn1  | C15  | 2.4214(12) | N2   | C16  | 1.509(6)  |
| Sn1  | C16  | 2.4175(10) | N2   | C13A | 1.563(14) |
| N1   | C10  | 1.496(6)   | C1   | C4   | 1.516(6)  |
| N1   | C14  | 1.506(5)   | C1   | C8   | 1.496(6)  |

| N1  | C18 | 1.515(6)  | C6   | C12  | 1.474(7)  |
|-----|-----|-----------|------|------|-----------|
| N1  | C20 | 1.523(6)  | C6   | C15  | 1.580(9)  |
| C2  | C5  | 1.431(11) | C8   | C26  | 1.525(7)  |
| C2  | C22 | 1.520(9)  | C11  | C13  | 1.531(13) |
| C3  | C21 | 1.419(11) | C11  | C25  | 1.555(11) |
| C7  | C19 | 1.485(11) | C15  | C17  | 1.405(10) |
| C7  | C24 | 1.506(9)  | C23  | C25  | 1.430(12) |
| С9  | C20 | 1.501(8)  | C25A | C23A | 1.443(17) |
| С9  | C21 | 1.466(9)  | C23A | C11A | 1.590(17) |
| C10 | C22 | 1.496(8)  | C11A | C13A | 1.432(17) |

Table S5. Bond Angles for  $(C_{13}H_{30}N)_2SnCl_6$ .

| Atom | Atom | Atom | Angle/°   | Atom | Atom | Atom | Angle/°  |
|------|------|------|-----------|------|------|------|----------|
| Cl2  | Snl  | Cl1  | 89.06(5)  | C9   | C20  | N1   | 113.8(4) |
| C13  | Sn1  | Cl1  | 90.03(4)  | C3   | C21  | C9   | 113.9(8) |
| C13  | Sn1  | Cl2  | 89.09(5)  | C10  | C22  | C2   | 109.3(6) |
| Cl4  | Sn1  | Cl1  | 89.96(4)  | C7   | C24  | C18  | 111.0(5) |
| Cl4  | Sn1  | Cl2  | 89.60(5)  | C4   | N2   | C13  | 99.9(4)  |
| Cl4  | Sn1  | Cl3  | 178.69(5) | C4   | N2   | C16  | 108.0(4) |
| Cl4  | Snl  | Cl5  | 90.92(5)  | C4   | N2   | C13A | 129.1(7) |
| C15  | Sn1  | Cl1  | 89.20(4)  | C12  | N2   | C4   | 112.2(3) |
| C15  | Snl  | Cl2  | 178.18(5) | C12  | N2   | C13  | 117.0(5) |
| C15  | Sn1  | Cl3  | 90.39(5)  | C12  | N2   | C16  | 109.8(4) |
| C16  | Snl  | Cl1  | 179.91(4) | C12  | N2   | C13A | 87.7(7)  |

| Cl6 | Sn1 | Cl2 | 90.91(5) | C16  | N2   | C13  | 109.3(5)  |
|-----|-----|-----|----------|------|------|------|-----------|
| Cl6 | Sn1 | C13 | 89.89(4) | C16  | N2   | C13A | 107.8(7)  |
| Cl6 | Sn1 | Cl4 | 90.13(4) | C8   | C1   | C4   | 110.0(4)  |
| Cl6 | Sn1 | C15 | 90.83(5) | N2   | C4   | C1   | 115.7(4)  |
| C10 | N1  | C14 | 108.4(4) | C12  | C6   | C15  | 105.9(5)  |
| C10 | N1  | C18 | 106.0(4) | C1   | C8   | C26  | 112.1(4)  |
| C10 | N1  | C20 | 112.7(4) | C13  | C11  | C25  | 107.8(10) |
| C14 | N1  | C18 | 109.2(4) | C6   | C12  | N2   | 116.0(4)  |
| C14 | N1  | C20 | 108.4(3) | C11  | C13  | N2   | 108.5(7)  |
| C18 | N1  | C20 | 112.1(4) | C17  | C15  | C6   | 111.1(7)  |
| C5  | C2  | C22 | 111.2(8) | C23  | C25  | C11  | 109.7(13) |
| C19 | C7  | C24 | 114.8(7) | C25A | C23A | C11A | 95.1(18)  |
| C21 | С9  | C20 | 114.2(6) | C13A | C11A | C23A | 103.2(15) |
| C22 | C10 | N1  | 116.1(4) | C11A | C13A | N2   | 115.2(15) |
| C24 | C18 | N1  | 115.9(4) |      |      |      |           |



Figure S1. The simulated and experimental powder X-ray diffraction patterns of  $(C_{13}H_{30}N)_2$ SnCl<sub>6</sub> and  $(C_{13}H_{30}N)_x$ SbCl<sub>y</sub>.

| Sample                           | Sn (At %) | Sb (At %) | Cl (At %) | Sb/(Sn+Sb) |
|----------------------------------|-----------|-----------|-----------|------------|
| $(C_{13}H_{30}N)_2SnCl_6:20\%Sb$ | 13.44     | 1.80      | 84.77     | 11.81%     |

**Table S6.** Elements content of  $(C_{13}H_{30}N)_2$ SnCl<sub>6</sub>:20%Sb from the quantitative analysis of EDS data.



Figure S2. SEM image of  $(C_{13}H_{30}N)_2$ SnCl<sub>6</sub>:20%Sb (a) and corresponding EDS mappings of Sn(b), Sb(c) and Cl(d) elements.



**Figure S3.** (a) XPS spectrum for the (C<sub>13</sub>H<sub>30</sub>N)<sub>2</sub>SnCl<sub>6</sub>:20%Sb powder, (b) Sn 3d XPS spectrum, (c) Sb 3d XPS spectrum.



Figure S4. Absorption spectra of  $(C_{13}H_{30}N)_x SnCl_y$ ,  $(C_{13}H_{30}N)_2 SnCl_6$  and  $(C_{13}H_{30}N)_2 SnCl_6$ : 20%Sb.



Figure S5. PL (a) and PLE (b) spectra of  $(C_{13}H_{30}N)_2SnCl_6$  monitored at different wavelengths.



Figure S6. PL (a) and PLE (b) spectra of  $C_{13}H_{30}NCl$ .



Figure S7. The lifetime decay curves of the  $C_{13}H_{30}NCl$  for the 505 nm emission ( $\lambda_{ex} = 320$  nm).



Figure S8. PL spectra of (C<sub>13</sub>H<sub>30</sub>N)<sub>2</sub>SnCl<sub>6</sub>:x%Sb under different excitations.



Figure S9. Normalized PL and PLE spectra monitored at different wavelengths of  $(C_{13}H_{30}N)_2SnCl_6:x\%Sb$ .







Figure S10. (a) Plot of PLQY with Sb/Sn ratio, best PLQY under 325nm excitation (b) (Sb/Sn = 20%) and 380nm excitation (c) (Sb/Sn = 20%).



Figure S11. CIE coordinates of (C13H30N)2SnCl6:20%Sb in the 1931 color space chromaticity

diagram under different excitation wavelengths.



Figure S12. Lifetime decay curve of (C<sub>13</sub>H<sub>30</sub>N)<sub>2</sub>SnCl<sub>6</sub>: x% Sb under different emission centers.



**Figure S13.** (a) PL spectra of  $(C_{13}H_{30}N)_2SnCl_6:20\%Sb$  monitored at 405nm laser. (b) The relationship between emission intensity and excitation power of  $(C_{13}H_{30}N)_2SnCl_6: 20\%$  Sb was measured using a 405nm laser. The linear fit result has a high R<sup>2</sup> value of 0.998.



Figure S14. Lifetime decay curve of  $(C_{13}H_{30}N)_2$ SnCl<sub>6</sub>: 20% Sb at 810 nm.



Figure S15. PLE (a) and PL (b) spectrum of  $(C_{13}H_{30}N)_xSbCl_y$ .



**Figure S16.** The fitting results of full width at half maximum (FWHM) as a function of temperature for (a)Peak 1, (b)Peak 2 and (c)Peak 3.



Figure S17. Raman spectrum (60-3050 cm<sup>-1</sup>) excited by 633 nm laser.



Figure S18. Partial charge densities of (a) CBM and (b) VBM in  $Sb^{3+}$ -doped ( $C_{13}H_{30}N$ )<sub>2</sub>SnCl<sub>6</sub> with [SbCl<sub>5</sub>]<sup>3-</sup> and [SnCl<sub>6</sub>]<sup>2-</sup> units. For clarity, (c) single [SnCl<sub>6</sub>]<sup>2-</sup> and (d) [SbCl<sub>6</sub>]<sup>3-</sup> units are shown.



Figure S19. Thermogravimetric analysis (TGA) curves of (C<sub>13</sub>H<sub>30</sub>N)<sub>2</sub>SnCl<sub>6</sub>: 20% Sb.



Figure S20. Emission intensity comparison of  $(C_{13}H_{30}N)_2SnCl_6$ : 20% Sb powder before and after exposure to air for 30 days.



Figure S21. XRD comparison of  $(C_{13}H_{30}N)_2$ SnCl<sub>6</sub>: 20% Sb powder before and after exposure to air for 30 days.



Figure S22. Photographs of WLED devices under daylight and 90mA drive current.



Figure S23. The PLQY of  $(C_{13}H_{30}N)_2SnCl_6$  at 260nm.



Figure S24. Experimental band gap values of  $(C_{13}H_{30}N)_2SnCl_6$  (a) and  $(C_{13}H_{30}N)_2SnCl_6$ :20%Sb (b).



Figure S25. Formation energy comparison diagram of only  $SbCl_6$  clusters and simultaneous formation of  $SbCl_5$  and  $SbCl_6$  clusters in  $(C_{13}H_{30}N)_2SnCl_6$ .

| Chemical formula                                                                                                                                                      | Highest<br>CRI | Highest<br>PLQY<br>(%) | CIE of the<br>sample        | CIE of LED<br>devices | Stokes<br>shift (nm) | FWHM<br>(nm) | PL Peak<br>position<br>(nm) | Ref.         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------|-----------------------------|-----------------------|----------------------|--------------|-----------------------------|--------------|
| (C <sub>13</sub> H <sub>30</sub> N) <sub>2</sub> SnCl <sub>6</sub> : Sb                                                                                               | 96.7           | 99.32                  | (0.36,0.42)                 | (0.346,0.38)          | 185/298              | ~/171        | 510/678                     | this<br>work |
| (C <sub>9</sub> H <sub>8</sub> N) <sub>2</sub> SnCl <sub>6</sub>                                                                                                      | N/A            | 41                     | (0.16,0.12)                 | N/A                   | 144                  | 86           | 433                         | 1            |
| (4-APEA) <sub>2</sub> SnBr <sub>6</sub>                                                                                                                               | N/A            | 27                     | (0.44,0.52)                 | N/A                   | 222                  | 111          | 566                         | 2            |
| C <sub>16</sub> H <sub>22</sub> Cl <sub>6</sub> F <sub>2</sub> N <sub>2</sub> Sn/<br>C <sub>16</sub> H <sub>22</sub> Br <sub>6</sub> F <sub>2</sub> N <sub>2</sub> Sn | N/A            | N/A                    | N/A                         | N/A                   | N/A                  | N/A          | N/A                         | 3            |
| (C <sub>6</sub> N <sub>2</sub> H <sub>16</sub> Cl) <sub>2</sub> SnCl <sub>6</sub>                                                                                     | N/A            | 8.1                    | (0.21,0.24)                 | N/A                   | 75                   | 125          | 450                         | 4            |
| (C <sub>9</sub> H <sub>14</sub> N) <sub>2</sub> [SnCl <sub>6</sub> ]                                                                                                  | N/A            | N/A                    | N/A                         | N/A                   | 114                  | N/A          | 407                         | 5            |
| $(C_5H_{14}N_2)_2[SnCl_6]_2 \cdot 5H_2$<br>O                                                                                                                          | N/A            | N/A                    | N/A                         | N/A                   | N/A                  | N/A          | 600                         | 6            |
| (C <sub>5</sub> N <sub>2</sub> H <sub>14</sub> )SnCl <sub>6</sub>                                                                                                     | 97             | N/A                    | (0.39,0.43)/<br>(0.45,0.43) | N/A                   | 367/380              | 203/254      | 570/680                     | 7            |
| (Ph <sub>3</sub> S) <sub>2</sub> SnCl <sub>6</sub>                                                                                                                    | N/A            | 17.5                   | N/A                         | N/A                   | 27/150               | N/A          | 382/505                     | 8            |
| (Ph <sub>3</sub> S) <sub>2</sub> Sn <sub>1-x</sub> Te <sub>x</sub> Cl <sub>6</sub>                                                                                    | N/A            | 2.5                    | N/A                         | N/A                   | 240/165              | N/A          | 595/520                     | 8            |
| (NH <sub>4</sub> ) <sub>2</sub> SnCl <sub>6</sub> : Te                                                                                                                | 88             | 83.51                  | N/A                         | (0.31,0.29)           | 200                  | 127          | 590                         | 9            |
| (C <sub>8</sub> H <sub>22</sub> N <sub>2</sub> Cl) <sub>2</sub> SnCl <sub>6</sub> : Sb                                                                                | N/A            | 41.76                  | N/A                         | N/A                   | 350                  | 178          | 690                         | 10           |
| (C <sub>10</sub> H <sub>16</sub> N <sub>2</sub> )SnCl <sub>6</sub> :Sb                                                                                                | 84             | 77                     | N/A                         | (0.32,0.34)           | N/A                  | N/A          | 500/600                     | 11           |
| (NH <sub>4</sub> ) <sub>2</sub> SnCl <sub>6</sub> :Sb                                                                                                                 | N/A            | 58                     | N/A                         | N/A                   | 200/374              | N/A          | 590/734                     | 12           |
| Cs <sub>2</sub> SnCl <sub>6</sub> : Sb                                                                                                                                | 81             | 37                     | (0.55,0.45)                 | (0.30,0.37)           | 101                  | 237          | 605                         | 13           |
| Cs <sub>2</sub> SnBr <sub>6</sub>                                                                                                                                     | 84.09          | 31                     | N/A                         | (0.52,0.41)           | 255                  | 121          | 600                         | 14           |
| Cs <sub>2</sub> SnCl <sub>6</sub> : Bi                                                                                                                                | N/A            | 78.9                   | N/A                         | (0.36, 0.37)          | 95                   | 66           | 455                         | 15           |
| Cs <sub>2</sub> Sn <sub>1-x</sub> Te <sub>x</sub> Cl <sub>6</sub>                                                                                                     | N/A            | 95.4                   | N/A                         | N/A                   | 120                  | >100         | 580                         | 16           |
| Rb <sub>2</sub> SnCl <sub>6</sub> :Bi                                                                                                                                 | N/A            | 21                     | N/A                         | N/A                   | 70                   | 65           | 426                         | 17           |
| Cs <sub>2</sub> Pt <sub>x</sub> Sn <sub>1-x</sub> Cl <sub>6</sub>                                                                                                     | N/A            | 22                     | N/A                         | N/A                   | 180                  | 110          | 640/433                     | 18           |
| Cs2SnClc:Te                                                                                                                                                           | N/A            | 42.3                   | N/A                         | N/A                   | 188                  | N/A          | 573                         | 19           |

 Table S7. Comparison of this work with already reported PLQY and CRI properties of tin (IV) halides.

## references

- 1. S. Zhou, L. Zhou, Y. Chen, W. Shen, M. Li and R. He, J. Phys. Chem. Lett., 2022, 13, 8717-8724.
- Q. Chen, M. Zhang, F. Dai, L. Zhao, S. Liu, H. Zhao, H. Zhou, L. Teng, W. Xu, L. Wang and J. Xing, *Adv. Opt. Mater.*, 2022, 11, 2202475.

- 3. X. You, J. Yao and Z. Wei, *Dalton Trans.*, 2020, **49**, 7252-7257.
- G. Song, M. Li, Y. Yang, F. Liang, Q. Huang, X. Liu, P. Gong, Z. Xia and Z. Lin, J. Phys. Chem. Lett., 2020, 11, 1808-1813.
- I. Feddaoui, M. S. M. Abdelbaky, S. García-Granda, K. Essalah, C. Ben Nasr and M. L. Mrad, J. Mol. Struct., 2019, 1186, 31-38.
- S. BelhajSalah, M. S. M. Abdelbaky, S. García-Granda, K. Essalah, C. Ben Nasr and M. L. Mrad, Solid State Sci., 2018, 86, 77-85.
- 7. G. Song, Z. Li, P. Gong, R. J. Xie and Z. Lin, Adv. Opt. Mater., 2021, 9, 2002246.
- Z. Luo, Y. Liu, Y. Liu, C. Li, Y. Li, Q. Li, Y. Wei, L. Zhang, B. Xu, X. Chang and Z. Quan, *Adv. Mater.*, 2022, 34, 2200607.
- 9. Z. Li, C. Zhang, B. Li, C. Lin, Y. Li, L. Wang and R.-J. Xie, Chem. Eng. J., 2021, 420, 129740.
- 10. L. Zhou, L. Zhang, H. Li, W. Shen, M. Li and R. He, Adv. Funct. Mater., 2021, 31, 2108561.
- G. Zhang, P. Dang, H. Xiao, H. Lian, S. Liang, L. Yang, Z. Cheng, G. Li and J. Lin, *Adv. Opt. Mater.*, 2021, 9, 2101637.
- 12. H. Lin, Q. Wei, B. Ke, W. Lin, H. Zhao and B. Zou, J. Phys. Chem. Lett., 2023, 14, 1460-1469.
- 13. J. Li, Z. Tan, M. Hu, C. Chen, J. Luo, S. Li, L. Gao, Z. Xiao, G. Niu and J. Tang, *Front. Optoelectron.*, 2019, **12**, 352-364.
- 14. C.-F. Lai, Y.-C. Chang and Y.-C. Tien, ACS Appl. Nano Mater., 2021, 4, 1924-1931.
- Z. Tan, J. Li, C. Zhang, Z. Li, Q. Hu, Z. Xiao, T. Kamiya, H. Hosono, G. Niu, E. Lifshitz, Y. Cheng and J. Tang, *Adv. Funct. Mater.*, 2018, 28, 1801131.
- Z. Tan, Y. Chu, J. Chen, J. Li, G. Ji, G. Niu, L. Gao, Z. Xiao and J. Tang, *Adv. Mater.*, 2020, **32**, 2002443.
- 17. S. A. Qamar, T.-W. Lin, Y.-T. Tsai and C. C. Lin, ACS Appl. Nano Mater., 2022, 5, 7580-7587.
- H. Yin, J. Chen, P. Guan, D. Zheng, Q. Kong, S. Yang, P. Zhou, B. Yang, T. Pullerits and K. Han, Angew. Chem., Int. Ed., 2021, 60, 22693-22699.
- R. Zeng, K. Bai, Q. Wei, T. Chang, J. Yan, B. Ke, J. Huang, L. Wang, W. Zhou, S. Cao, J. Zhao and B. Zou, *Nano Res.*, 2020, 14, 1551-1558.