Supporting Information

Achieving High-performance Narrowband Blue MR-TADF Emitter by Suppressing Isomer Formation and Extending π -

conjugate Skeleton

Kaiyuan Di^a, Runda Guo^{ac,} *, Yaxiong Wang^a, Yingbo Lv^b, Hanrui Su^a, Qiang Zhang^a, Bing Yang^b and Lei Wang^{a,} *

^a Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.

^b State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, People's Republic of China.

^cState Key Laboratory of Luminescent Materials and Devices South China University of Technology, Guangzhou 510640, People's Republic of China.

Corresponding Author

*Email: <u>wanglei@mail.hust.edu.cn</u>,

*Email: <u>runda_guo@hust.edu.cn.</u>

Characterization.

The intermediates and final compounds were confirmed by ¹H NMR or ¹³C NMR spectra on a Bruker-AF301 AT 400 or 600 MHz spectrometer. Thermogravimetric analysis (TGA) was undertaken using a PerkinElmer Instruments Pyris1 TGA at a heating rate of 10 °C min⁻¹ from 30 to 600 °C under a nitrogen atmosphere. Mass spectra were recorded on high resolution Fourier-transform mass spectrometer. Differential scanning calorimetry (DSC) was measured under nitrogen on a PE Instruments DSC 2920 unit at a heating rate of 10 °C min⁻¹ from 30 to 300 °C. The thermal decomposition temperatures (T_d) were corresponded to 5% weight loss temperatures. The glass transition temperature (T_g) was determined from the second heating scan. The PL spectra and the transient photoluminescence spectra were recorded on an Edinburgh Instruments (FLS 920 spectrometer). The UV-vis absorption spectra were measured on a Shimadzu UV-VIS-NIR Spectrophotometer (UV-3600) in the wavelength range of 190-1100 nm. The absolute PLQY tests were carried out using a Zolix OmniFluo spectrofluorometer equipped with a calibrated integrating sphere. Cyclic voltammetry was recorded on a computer-controlled EG&G Potentiostat/Galvanostat model 283 at room temperature with a conventional three-electrode system, which consisted of a platinum wire counter electrode, Ag/AgNO₃ (0.1 M) reference electrode, and a glassy carbon working electrode of 2 mm diameter. A 0.10 M tetrabutylammonium hexafluorophosphate (n-Bu₄NPF₆) solutions in dry dichloromethane and N,N-dimethylformamide were employed as the supporting electrolyte, and ferrocene was added as a calibrant in the whole measurement.

Device fabrication and measurements.

The used ITO glass substrates, MoO₃, LiF, TAPC, *m*CP, PPF and TmPyPB were commercially available. The devices were fabricated by evaporating organic layers on ITO (20 Ω square⁻¹), which were precleaned carefully and treated with oxygen plasma for 5 min. The devices were deposited in the vacuum of 2 × 10⁻⁶ Torr. For all of the OLEDs, the emitting areas were determined by the overlap of two electrodes as 0.09 cm². The *J-V-L* of the devices was measured using a Keithley 2400 source meter equipped with a calibrated silicon photodiode. The EL spectra were measured using a PR655 spectrometer. All measurements were carried out at room temperature under ambient conditions.

Calculation details.

The density functional theory (DFT) and timed dependent DFT (TD-DFT) calculations were employed to optimize the ground state and excited state geometries and electronic properties, which were carried out with the B3LYP hybrid functional at the basis set level of 6-31G(d). the spin-orbit couplings (SOC) were calculated by def2-SVP basis set using BDF code.

Figure S1. Highest occupied and lowest unoccupied natural transition orbitals (HONTOs and LUNTOs) for the S_1 state of Me-PABO and Me-PABS.

Table S1 Spin-orbit coupling (SOC) matrix elements between the low lying singlet and triplet excited states of the fluorophores with all values reported in cm^{-1}

SOC	S_1 - T_1	S ₁ -T ₂	S ₁ -T ₃
PAB	0.0431	0.8495	0.0115
Me-PABO	0.0464	0.8300	0.3109
Me-PABS	0.0487	0.9400	0.3603

Figure S2. The fluorescence (FL, room temperature) spectra of Me-PABO and Me-PABS in different solvent (1.0×10^{-5} M).

Table S2 The photophysical data of Me-PABO and Me-PABS in different solvents.

Compound	Fluorescence	Cyclohexane	Toluene	Dichloromethane	N,N-dimethylformamide
Me-PABO	$\lambda^{a}_{em}\left(nm\right)$	449	453	460	464
	FWHM ^b (nm)	21	21	27	29
Me-PABS	$\lambda^{a}_{em}\left(nm\right)$	459	463	469	472
	FWHM ^b (nm)	18	21	26	29

^a The peak wavelength of the PL spectrum. ^b Full width at half maximum.

Figure S3. The low-temperature (77K) fluorescence and phosphorescence spectra of Me-PABO and Me-PABS in toluene.

Figure S4 Transient PL decay spectra of PAB doped into PPF films (5 wt%) at room temperature under N_2 (inset: prompt components).

Calculation Formulas for the Photophysical Parameters: The evaluations of exciton dynamic rate constants were calculated by equation S1-S6¹⁻³

$$k_{\rm p} = 1/\tau_{\rm PF}$$
Equation S1 $k_{\rm d} = 1/\tau_{\rm DF}$ Equation S2 $k_{\rm F} = \Phi_{\rm PF}/\tau_{\rm PF}$ Equation S3 $\Phi = k_{\rm F}/(k_{\rm F} + k_{\rm IC})$ Equation S4 $\Phi_{\rm PF} = k_{\rm F}/(k_{\rm F} + k_{\rm IC} + k_{\rm ISC})$ Equation S5

The total PLQY of the emitter-doped PPF films is high enough. And phosphorescence was not observed at room temperature. Therefore, it is reasonably assumed that 1) $k_r^S \gg k_{nr}^S, k_{rr}^T, k_{nr}^T$ and 2) $k_{RISC} \gg k_{rr}^T, k_{nr}^T$. Where k_r^S and k_{nr}^S are the rate constants for radiative and non-radiative decay from S₁, k_r^T and k_{nr}^T are the rate constants of radiative and non-radiative decay from T₁, respectively. It is experimentally observed that $k_p \gg k_d$ (Table.S2), then $k_p \approx k_r + k_{ISC} + k_{RISC}$ and $k_p k_d \approx k_r k_{RISC}$. When $k_{ISC} \gg k_{RISC}$, k_p can be expressed as $k_p \approx k_r + k_{ISC}$, and k_{RISC} is obtained as: $k_{RISC} = k_p k_d / (k_p - k_{ISC})$

Table S3 The photophysical parameter of PAB, Me-PABO and Me-PABS (5 wt%doped in PPF).

compound	$\Phi/\Phi_{ m PF}/\Phi_{ m DF}$	- ()	$k_{\rm p}$ $k_{\rm d}$ $k_{\rm F}$ $k_{\rm lC}$	k _{ISC}	k _{RISC}			
		$\tau_{\rm PF}(\rm ns)/\tau_{\rm DF}(\mu s)$	(10 ⁸ s ⁻¹)	(10 ⁴ s ⁻¹)	(10^7 s^{-1})	(10 ⁶ s ⁻¹)	(10 ⁷ s ⁻¹)	(10 ⁴ s ⁻¹)
PAB	0.651/0.511/0.140	8.05/49.94	1.24	2.01	6.33	3.41	2.67	2.55
Me-PABO	0.875/0.401/0.474	6.12/61.75	1.6	1.6	6.42	9.12	8.67	3.50
Me-PABS	0.921/0.415/0.506	3.15/39.67	3.17	2.52	13.16	11.29	17.42	5.59

Figure S5. (a) DSC and (b) TGA curves of Me-PABO and Me-PABS.

Figure S6. Cyclic voltammogram of Me-PABO and Me-PABS.

Figure S7. EL characteristics of PAB-based device: (a) Current density-voltagebrightness (J-V-B) characteristics; (b) EQE-brightness curves; (c) current efficiencybrightness-power efficiency curves; (d) normalized EL spectra at 6 V. The device structures were ITO/MoO₃ (10 nm)/TAPC (60 nm)/mCP (10 nm)/PPF: x wt% PAB (20 nm, x=1, 3, 5)/PPF (10 nm)/TmPyPB (30 nm)/LiF (1 nm)/Al (100 nm).

Compound	$V_{on}{}^{a}\left(V\right)$	$L_{\rm max}^{\rm b}$ (cd m ⁻²)	CE_{max}^{b} (cd A ⁻¹)	PE _{max} ^b (lm W ⁻¹)	EQE_{max}^{b} (%)	$\lambda_{EL}{}^{\circ}/FWHM^{\circ}(nm)$	$CIE^{d}(x, y)$
PAB (1wt%)	3.6	1540	9.43	6.43	13.1	452/30	(0.147, 0.052)
PAB (3wt%)	3.6	1612	10.97	8.61	15.3	456/30	(0.138, 0.075)
PAB (5wt%)	3.4	1651	10.61	8.33	15.1	456/30	(0.138, 0.073)

Table S4 The EL performances of OLEDs based on PAB.

^a Voltage at 1 cd m⁻¹ (V). ^b Maximum luminance (cd m⁻¹); Maximum current efficiency (cd A⁻¹); Maximum power efficiency (lm W⁻¹); Maximum external quantum efficiency (%). ^c The peak of the EL spectrum; Full width at half maximum of EL spectrum. ^d Commission Internationale de l'Eclairage coordinates.

Figure S9. ¹³C NMR spectrum of 1 in DMSO-d6.

Figure S11. ¹³C NMR spectrum of 2 in CD₂Cl₂.

Figure S13. ¹³C NMR spectrum of 3 in DMSO-d6.

Figure S15. ¹³C NMR spectrum of 4 in CD₂Cl₂.

Figure S16. ¹H NMR spectrum of Me-PABO in CD₂Cl₂.

Figure S17. ¹³C NMR spectrum of Me-PABO in CD₂Cl₂.

Figure S18. ¹H NMR spectrum of Me-PABS in CD₂Cl₂.

Figure S19. ¹³C NMR spectrum of Me-PABS in CD₂Cl₂.

References

- 1. Q. Zhang, H. Kuwabara, W. J. Potscavage, Jr., S. Huang, Y. Hatae, T. Shibata and C. Adachi, J. Am. Chem. Soc., 2014, **136**, 18070-18081.
- 2. S. Oda, B. Kawakami, Y. Yamasaki, R. Matsumoto, M. Yoshioka, D. Fukushima, S. Nakatsuka and T. Hatakeyama, *J. Am. Chem. Soc.*, 2022, **144** 106-112.
- 3. Y. Kondo, K. Yoshiura, S. Kitera, H. Nishi, S. Oda, H. Gotoh, Y. Sasada, M. Yanai and T. Hatakeyama, *Nat. Photon.*, 2019, **13**, 678-682.