Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

1 Supporting Information

2	Enhancing the Catalytic Efficiency and Stability of Photoenzymes
3	Using Hydrogen-bonded Organic Framework Material HOF-101
4	Guohua Li ^{a,b} , Xifeng Lv ^b , Wei Ji ^b , Yegui Zhou ^b , Zhiwen Lin
5	Hui Cao ^{b,#} , Tianwei Tan ^{a,b,#}
6	a Beijing Advanced Innovation Center for Soft Matter Science and
7	Engineering, Beijing University of Chemical Technology, Beijing,
8	100029 China.
9	b National Energy R&D Center for Biorefinery, Beijing Key
10	Laboratory of Bioprocess, Beijing University of Chemical Technology.
11	Beijing, 15th, Beisanhuan East Road, Beijing, 100029, PR China.
12	# Corresponding authors: Tianwei Tan (twtan@mail.buct.edu.cn), Hui
13	Cao(caohui@mail.buct.edu.cn). 15th, Beisanhuan East Road, Beijing, PR
14	China.
15	Principal author: Guohua Li (16622881217@163.com), ORCID: 0000-
16	0002-7829-9941

1

17 Supporting table

18 Table S1 B Solution type and configuration method

Type of Solution B	ТСРР	М	LDH
HOF-101	0	0	0
<u>T@HOF-101</u>	0.2	0	0
<u>TM@HOF-101</u>	0.2	0.2	0
TML@HOF-101	0.2	0.2	0.2

Solution B was prepared by dissolving in 18ML methanol according
to the formula in Table S1. The units of values in this table are mg/mL.

21 Table S2 The photocatalytic regeneration performance of NADH by

Photocatalyst	Concentration of photocatalyst (g L ⁻¹)	Mediator	Reaction equilibrium time (min)	Yield (%)	TOF (h ⁻¹)
TM@HOF-101 (our study)	1	Rh ^[a]	40	74.5	6.36
PCN@TA/PEI-Rh4	0.5	Rh	20	37.8	70.82
SiPP@CPNL-Rh ⁵	1	Rh	28	39.6	44.8
GCN@M/TiO26	2.5	Rh	20	58	42.67
$Co1/C_3N_4^7$	2	Rh	10	98	33.01
Rh-NU-1006 ⁸	1	Rh	120	28	20.69
DBTS-CMP ₁ ⁹	1	Rh	45	84	3.75
ACN ¹⁰	2	Rh	60	62.3	3.36
ATCN-DSCN ¹	0.7	Rh	15	74	2.95
TCPP/SiO ₂ /Rh HNPs ¹¹	2	Rh	180	75	1.67
CTF ¹²	-	Rh	120	75.9	0.76
AM/M/BP HNSs ¹³	0.2	Rh	180	89	0.5

22 different photocatalysts.

23 [a] Rh is $[Cp*Rh(bpy)H_2O]^{2+}$.

References

26	1.	J. Meng, Y. Tian, C. Li, X. Lin, Z. Wang, L. Sun, Y. Zhou, J. Li, N. Yang, Y. Zong, F. Li, Y. Cao and
27		H. Song, Catalysis Science & Technology, 2019, 9 , 1911-1921.
28	2.	Z. Tang, X. Li, L. Tong, H. Yang, J. Wu, X. Zhang, T. Song, S. Huang, F. Zhu, G. Chen and G.
29		Ouyang, Angew Chem Int Ed Engl, 2021, 60, 23608-23613.
30	3.	Y. Tan, J. Ma, F. Zhang, S. Wang, F. Lan, H. Liu and R. Li, ACS Sustainable Chemistry &
31		Engineering, 2022, 10 , 12065-12071.
32	4.	Y. Cheng, J. Shi, Y. Wu, X. Wang, Y. Sun, Z. Cai, Y. Chen and Z. Jiang, Research (Wash D C),
33		2021, 2021 , 8175709.
34	5.	S. Li, Y. Cheng, Y. Chen, J. Li, Y. Sun, J. Shi and Z. Jiang, Applied Catalysis B: Environmental,
35		2022, 317 .
36	6.	S. Zhang, Y. Zhang, Y. Chen, D. Yang, S. Li, Y. Wu, Y. Sun, Y. Cheng, J. Shi and Z. Jiang, ACS
37		Catalysis, 2020, 11 , 476-483.
38	7.	W. Liu, W. Hu, L. Yang and J. Liu, Nano Energy, 2020, 73.
39	8.	Y. Chen, P. Li, J. Zhou, C. T. Buru, L. Dordevic, P. Li, X. Zhang, M. M. Cetin, J. F. Stoddart, S. I.
40		Stupp, M. R. Wasielewski and O. K. Farha, J Am Chem Soc, 2020, 142, 1768-1773.
41	9.	F. Lan, Q. Wang, H. Chen, Y. Chen, Y. Zhang, B. Huang, H. Liu, J. Liu and R. Li, ACS Catalysis,
42		2020, 10 , 12976-12986.
43	10.	E. J. Son, Y. W. Lee, J. W. Ko and C. B. Park, ACS Sustainable Chemistry & Engineering, 2018, 7,
44		2545-2552.
45	11.	X. Ji, J. Wang, L. Mei, W. Tao, A. Barrett, Z. Su, S. Wang, G. Ma, J. Shi and S. Zhang, Advanced
46		Functional Materials, 2018, 28 .
47	12.	R. K. Yadav, A. Kumar, NJ. Park, KJ. Kong and JO. Baeg, Journal of Materials Chemistry A,
48		2016, 4 , 9413-9418.
49	13.	X. Ji, Y. Kang, T. Fan, Q. Xiong, S. Zhang, W. Tao and H. Zhang, Journal of Materials Chemistry
50		A, 2020, 8 , 323-333.
51		