SUPPORTING INFORMATION

High-performances "fueled" photodetector based on few-layered 2D ternary chalcogenide NiGa₂S₄

Marco Serra, *^{a,f,g} Nikolas Antonatos, ^a Jan Luxa, ^a Luc Lajaunie, ^{b,c} Josep Albero, ^d Agata

Sabik, ^e Wojciech M. Linhart, ^e Hermenegildo Garcia, ^d Robert Kudrawiec, ^e David

Sedmidubský ^a and Zdenek Sofer ^{*a}

^a Department of Inorganic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16228, Prague, Czech Republic

E-mail: soferz@vscht.cz, serram@vscht.cz

^b Departamento de Ciencia de los Materiales e Ingenieria Metalúrgica y Química Inorgánica, Facultad de ciencia, Universidad de Cádiz, Campus Río San Pedro S/N, Puerto Real, 11510, Cádiz, Spain

^c Instituto Universitario de Investigación de Microscopía Electrónica y Materiales (IMEYMAT), Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro S/N, Puerto Real 11510, Cádiz, Spain.

^d Instituto de Tecnología Química, Universitat Politécnica de Valencia – Consejo Superior de Investigación Científicas (UPV-CSIC), Universitat Politècnica de Vàlencia, Avda. de los Naranjos S/N, 46022, Valencia, Spain.

^e Department of Semiconductor Materials Engineering, Wroclaw University of Scienceand Technology, Wybreże Wyspiańskiego 27, 50-270, Wrocław, Poland

^f Centro H2–MORE, Università di Modena e Reggio Emilia, 41125 Modena, Italy

^g Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy

Figure S1. Indexed XRD pattern of the NiGa₂S₄ crystalline powder.

Figure S2. Indexed XRD pattern of a bulk NiGa₂S₄ crystal.

Figure S3. Raman spectra of NiGa₂S₄ crystal prepared by CVT technique.

Figure S4. SEM image of a scotch tape exfoliated NiGa₂S₄ crystal prepared via CVT technique and the corresponding EDS elemental mapping, spectrum, and semi-quantitative analysis.

Figure S5. SEM image of a powder obtained grinding NiGa₂S₄ crystal exposed to air for a period of 3 months and the corresponding EDS elemental mapping, spectrum, and semiquantitative analysis.

Figure S6. - EDS Map of a typical NiGa₂S₄ crystalline flake.

Element	Atomic Fraction (%)	Atomic Error (%)
S	58.2	2.4
Ni	13.4	1.8
Ga	28.4	2.7

Table S1. Elemental composition obtained from STEM-EDS analysis.

Figure S7. High-resolution core-level spectra of **a**) Ni 2p region; **b**) Ga 2p region and **c**) S 2s region.

Figure S8. – Various AFM images of 2D-NiGa₂S₄ with their corresponding height profile. These flakes were deposited on ITO that were employed as the photodetector.

Figure S9. An exemplary analysis of room temperature optical absorption spectrum: square root of absorption (red line) typical for indirect absorption and square of absorption (blue line) typical for direct absorption.

Figure **S10**. Scheme of the cell employed for the PEC tests.

Figure S11. Linear Sweep Voltammetry (**top**) and Cyclic voltamperometric curve (**bottom**) of NiGa₂S₄/ITO. A 420 nm LED light source has been employed to investigate the photocurrent induced upon irradiation.

Figure S12. SEM image of 2D-NiGa₂S₄ flakes which were employed for the fabrication of the photodetector.

Figure S13. a) Comparison of the photocurrent density obtained using an ITO glass and a NiGa₂S₄/ITO photodetector in the presence of a 1 M KOH ethanol (25% v/v) water solution as electrolyte under irradiation with purple light (power = 1000 mW). **b)** Magnification of the photocurrent density using bare ITO glass as photodetector.

Figure S14. Long term cycle stability test of NiGa₂S₄-based photodetector in 1 M KOH ethanol (25% v/v) water solution at 0.5 V vs SCE under purple and infrared light, with irradiance power of 800 and 300 mW respectively.

Figure S15. Cyclic voltammetry diagram of the NiGa₂S₄/ITO electrode before and after the long-term ON-OFF tests.