

Figure S1.  $Al_2O_3/MoS_2$  laminated film (a) transmittance curve, (b) reflectance curve, and (c) the change rule of refractive index n and extinction coefficient k.

Figure S1 exhibits the optical properties of  $Al_2O_3/MoS_2$  laminated films with different thicknesses. The transmittance variation of the  $Al_2O_3/MoS_2$  samples in Fig. S1(a) highly corresponds to their reflectance resulting in Fig. S1(b). As the samples transmittance increases with increasing  $Al_2O_3$  thickness, their reflectance has been decreasing. When the  $Al_2O_3$  thickness over 1.5 nm, the transmittance begins to decline, while the reflectance turns to rise. These results indicate the optical antireflective effect of  $Al_2O_3$  as the window of  $MoS_2/Si$  solar cells, with the maximum light absorption attaining at appropriate  $Al_2O_3$  thickness of 1.5 nm. The ellipsometry spectroscopy in Fig. S1(c) reveals the origins of  $Al_2O_3$  antireflection. The refractive index n gradually decreases in the range of 300-600 nm, and the extinction coefficient k decreases within 400 nm and increases in the medium and long wavelength range of 400 nm-1000 nm.



## Figure S2. C-V curves of Ag/Al<sub>2</sub>O<sub>3</sub>/p-Si V<sub>fb</sub>=0.11 V and 0.41 V.

 $\label{eq:Figure S2} Figure S2 \mbox{ collects the C-V curves of $Ag/Al_2O_3$/p-Si structure at 100-kHz frequency.}$  The flatband voltage  $V_{fb}$  is the voltage at

$$\frac{C''C}{C'^2} + \frac{3}{2} \left( \frac{C}{3\varphi_t |C'|} \right)^{1/2} - 3 = 0$$

Here, the first (C') and second derivatives (C'') of C-V curves are calculated by mathematical tool with adequate smoothing to avoid noise distortion;  $\phi_t$ =KT/q is thermal voltage, K is Boltzmann constant, T is absolute temperature and q is elementary charge. The calculated V<sub>fb</sub> results are 0.11 V for Ag/Al<sub>2</sub>O<sub>3</sub>(1 nm)/p-Si 1 nm and 0.41 V for Ag/Al<sub>2</sub>O<sub>3</sub>(2 nm)/p-Si, respectively. The positive V<sub>fb</sub>s is the indicative for the presence of negative fixed charge in the Ag/Al<sub>2</sub>O<sub>3</sub>/p-Si stacks for both samples.