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Figure S1. The dispersion properties of PEDOT and AQS-PDOT (1:5) in aqueous 

solutions (10 mg/mL) after an aging time of a week. 
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Figure S2. FTIR spectrum of the AQS, PEDOT and AQS-PEDOT (1:5) complex.

In the FTIR spectrum of the AQS, the peaks at 1670, 1589, 1298, 1219 and 1047 cm-1 

are associated with C=O stretching, C=C stretching, C-C stretching, and the SO3
- 

characteristic vibrations [1], respectively. The main characteristic peaks of PEDOT 

appeared at 1518 cm-1 (C=C stretching), 1357 cm-1 (C-C stretching), 1206 and 1094 

cm-1 (C-O-C vibration), and finally 984, 845 and 692 cm-1 (C-S-C), which are all 

present in the FTIR spectrum of AQS-PEDOT (1:5) complex. In addition, the 

characteristic peak of the SO3
- group was also observed in the AQS-PEDOT (1:5) 

complex. However, this peak showed a slight red-shift from 1219 to 1214 cm-1; 

meanwhile this peak got broader, properly caused by merging of the bands of the C-

O-C groups of the PEDOT moiety. Also, the characteristic of C-S stretching at 850 and 

700 cm-1 have shifted to higher wavenumbers in comparison to pure PEDOT. This shift 

is related to interaction between positively charged PEDOT and negatively charged 
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AQS. Therefore, it is concluded that EDOT has gone through a complete oxidization 

process and successfully doped with AQS.  
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Fig. S3. TGA curves of raw AQS, PEODT, and AQS-PEDOT (1:5).

Fig. S3 shows the TGA results for quantitatively evaluating the doping degree of the 

AQS with PEDOT. In the TGA curves, a small amount of weight loss below 100 °C 

could be due to the removal of the adsorbed water. The raw AQS did not exhibit 

detectable weight loss up to 414 °C. The PEDOT The PEDOT and the AQS-PEDOT 

nanocomposite showed a similar TGA curve shape, indicating that a similar 

degradation procedure happened. They both had a huge weight loss from 200~400 °C. 

Note that AQS was stable in this temperature range, the amount of the PEDOT in the 

AQS-PEDOT nanocomposite can be calculated by the residual amounts of PEDOT and 

AQS-PEDOT at 400 °C of 59.86% and 70.45 %, respectively. Since the residue of AQS 

at the temperature of 400 °C was of 94.96%, the amount of PEDOT in the AQS-PEDOT 

can be calculated to be 69.98 wt%. This value was close to the amount of the EDOT 

monomers added into the AQS solution (68.40 wt%) during the preparation, confirming 

the high yield of the double oxidative polymerization of PEDOT. 
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Fig. S4. SEM images of AQS-PEDOT conductive fillers with different feeding ratios 

of dopants (a, b) 1:7, (c, d) 1:5, and (e, f) 1:3.
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 Fig. S5. SEM images of PEDOT/PAA hydrogel. Left, PEDOT/PAA hydrogel. Right, 

magnified image of circled area in PEDOT/PAA hydrogel. 

Fig. S6. EDS spectrum of the AQS-PEDOT/PAA electrode and the atom weight 

percentage.
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Fig. S7. Arrhenius plot of AQS-PEDOT/PAA hydrogel film.

               Eq. S1
𝜎 = 𝐴 𝑒𝑥𝑝( ‒

𝐸𝑎

𝑅𝑇
)

where A is the pre-exponential, Ea is the activation energy (kJ/mol), R is the universal 

gas constant (J/(molK)), and T is the absolute temperature (K).
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Fig. S8. CV and GCD curves of PEDOT/PAA electrode (a, b) and AQS-PEDOT/PAA 
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electrodes with different feeding ratios of dopants (c, d) 1:7, (e, f) 1:3 and 1:2 (g, h), 

respectively. 

Fig. S9. The configuration of the assembled asymmetric SCs.
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Table S1 Comparison of the electrochemical performance of reported advanced hydrogel 
supercapacitors with this work.

Electrode Ca (mF/cm2)
Ea 

(μWh/cm2)

Pa 

(μW/cm2)
Cyclic stability Ref.

CNT+PEDOT:PSS/PAM+SA 128 (1 mA /cm2) 3.6 200 80% (5000) [2]

PEDOT:PSS/PVA/PMAA 7.38 (10 mV/s) 0.65 170 82%(2000) [3]

CMC-PEDOT/PAAM 269 (1 mA /cm2) 23.93 400 88% (5000) [4]

PEDOT:PSS/PVA 128.9 (0.5 mA /cm2) 11.46 200.5 89.8% (10000) [5]

PPy/B-PVA/KCl 224 (0.8 mA/cm2) 20 600 92% (1000) [6]

PANI-PCH 488 (0.2 mA/cm2) 42 1600 ~100% (10000) [7]

PANI-CNTP/PM 158.4 (0.01 mA) 14.08 285.71 - [8]

CNT-PPy-PAA 0.22 (5 mV/s) - - - [9]

PANI-PHP 58.8 (0.2 mA/cm2) 6.94 500 97% (10000) [10]

PVA-CNM-PANI 286.4 (5 mV/s) - - 80% (5500) [11]

PANI/PAAm 137.4 (0.5  mA/cm2) - - 82% (2000) [12]

PPy/CPH 261.2 (5 mA cm-2) 23.0 80 86.3% (10000) [13]

MXene/PVA-H2SO4 328 (2 mV/s) 7.3 132 [14]

2DMON/CNTS 285 (2 mV/s) 14.2 940 80% (8000) [15]

PAD/H2SO4-PANI 430 (0.5 mA cm-2) 22 150 90% (10000) [16]

PVA/PHEA/PANI 98 (0.2 mA/cm2) 8.48 78.52 98% (8000) [17]

AQS-PEDOT/PAA 466.5 (1 mA cm-2)
41.47

27.56

400

4000
90% (5000) This work

Table S2 Comparisons of temperature-tolerance of the AQS-PEDOT/PAA SC with the 

previously reported hydrogel SCs.

Sample Temperature tolerance Mechanical performance Ref.

SA-g-DA/KCl electrolyte -10 °C ~RT elongation ~300% [18]
MMT/PVA electrolyte −50~90 °C elongation ~22.6% [19]
PVAPB electrolyte −5~60 °C - [20]
PVA DN electrolyte -40 °C ~RT Compression strain ~60% [21]
SA–borax/gelatin electrolyte −20~60 °C elongation 305.7% [22]
MGO-PAM electrolyte -30~100 °C ~ 480% extension ratio [23]
PAM-PVP semi-IPN electrolyte −20~RT elongation ~1600% [24]
P(AMPS0.3-co-AAM0.4) 
electrolyte

−20 to 100 °C Strain 900% [25]

PCH/AV_FS//PANI SC -40 °C ~RT ~ 500% extension ratio [26]
AQS-PEDOT/PAA SC -30~90 °C Strain 1180% This work

RT represents room temperature; – means not available.
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