Supporting Information

Regulating anti-thermal quenching to zero thermal quenching for

highly efficient blue-emitting Eu²⁺-doped K-beta-alumina phosphors

Yuhang Kuang, ^a Yunjia Li, ^a Borui Chen, ^a Shujuan Zhao, ^a Mengfang Chen, ^a Shixun Lian, ^a Jilin Zhang *^a

^a Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China

*Email: chemzhangjl@hunnu.edu.cn

Figure S1. Rietveld refinement results for K_{0.90-x}Sr_xAl₁₁O_{17+d}:0.2Eu²⁺. (a) x = 0, (b) x = 0.02, (c) x = 0.04, (d) x = 0.08, (e) x = 0.10.

Atom	Wyck.	Site	<i>x</i> / Å	y/Å	z/Å	S.O.F	U _{iso} / Ų
K1	6h	mm2	0.66732	0.33463	1/4	0.222	0.0098
Sr1	6h	mm2	0.66732	0.33463	1/4	0.01	0.0098
Eu1	6h	mm2	0.66732	0.33463	1/4	0.0444	0.0098
K2	6h	mm2	0.88396	0.76791	1/4	0.058	0.0098
Sr2	6h	mm2	0.88396	0.76791	1/4	0.01	0.0098
Eu2	6h	mm2	0.88396	0.76791	1/4	0.0222	0.0098
Al1	12k	m	0.83143	0.66287	0.10856	0.9837	0.0065
Al2	4f	3m	1/3	2/3	0.02840	1	0.0111
AI3	4f	3m	1/3	2/3	0.17066	0.9294	0.0024
Al4	2a	-3m	0	0	0	1	0.0211
O1	12k	m	0.15747	0.31495	0.05328	1	0.0064
O2	12k	m	0.50196	0.00393	0.14264	1	0.0122
O3	4f	3m	2/3	1/3	0.04890	0.9354	0.0127
O4	4e	3m	0	0	0.14287	1	0.0322
O5	6h	mm2	0.30183	0.60366	1/4	0.333	0.0489

Table S1. Cell parameters of $K_{0.90-x}Sr_xAl_{11}O_{17+d}:0.2Eu^{2+}$ (*x* = 0.06)

Table S2. Cell parameters of K_{0.90-x}Sr_xAl₁₁O_{17+d}:0.2Eu²⁺

	a / Å	c/Å	V/Å ³
<i>x</i> = 0	5.597(1)	22.685(1)	615.45(4)
<i>x</i> = 0.02	5.600(1)	22.690(1)	616.26(4)
<i>x</i> = 0.04	5.608(1)	22.718(1)	618.65(4)
<i>x</i> = 0.06	5.603(1)	22.696(1)	616.99(3)
<i>x</i> = 0.08	5.605(1)	22.706(1)	617.74(3)
<i>x</i> = 0.10	5.598(1)	22.680(1)	615.55(4)

Figure S2. K1O9 and K2O8 polyhedrons.

	K1-O2(×6)	K1-O5(×3)	D of K1	K2-O2(×4)	K2-O4(x2)	K2-O5(×2)
<i>x</i> = 0	×4: 2.862(1)	×2: 2.984(1)	0.03277	3.083(1)	2.688(1)	2.557(1)
	×2: 3.020(1)	×1: 3.288(1)				
<i>x</i> = 0.02	×4: 2.874(1)	×2: 3.112(1)	0.03753	3.093(1)	2.677(1)	2.776(1)
	×2: 2.919(1)	×1: 3.196(1)				
<i>x</i> = 0.04	×4: 2.946(1)	×2: 3.125(1)	0.02696	3.140(1)	2.642(1)	2.660(1)
	×2: 2.959(1)	×1: 3.149(1)				
<i>x</i> = 0.06	×4: 2.912(1)	×2: 3.090(1)	0.02680	3.093(1)	2.680(1)	2.559(1)
	×2: 2.918(1)	×1: 3.100(1)				
<i>x</i> = 0.08	×4: 2.837(1)	×1: 3.025(1)	0.04111	3.075(1)	2.637(1)	2.648(1)
	×2: 3.008(1)	×1: 3.047(1)				
		×1: 3.335(1)				
<i>x</i> = 0.10	×4: 2.906(6)	×1: 3.052(1)	0.2322	3.070(7)	2.627(10)	2.546(1)
	×2: 2.971(8)	×1: 3.040(1)				
		×1: 3.158(1)				

Table S3. K-O bond lengths (Å) for $K_{0.90-x}Sr_xAl_{11}O_{17+d}:0.2Eu^{2+}$

The polyhedral distortion index (D) can be calculated by the following equation,^[1]

$$D = \frac{1}{n} \sum_{i=1}^{n} \frac{|l_i - l_{\mathrm{av}}|}{l_{\mathrm{av}}}$$

where l_i and l_{av} are the single and average bond length for the central atom and coordinating atom(s), respectively.

	Spinel blocks	K layers
<i>x</i> = 0	6.4833	4.8591
<i>x</i> = 0.02	6.4675	4.8774
<i>x</i> = 0.04	6.4841	4.8748
<i>x</i> = 0.06	6.4850	4.8628
<i>x</i> = 0.08	6.5422	4.8111
<i>x</i> = 0.10	6.6136	4.7266

Table S4. Thickness (Å) of the spinel blocks and K layers*

Figure S3. PL ($\lambda_{ex} = 270 \text{ nm}$) and PLE spectra ($\lambda_{em} = 400 \text{ nm}$) of $K_{0.80}Sr_{0.10}Al_{11}O_{17+d}$:0.2Eu²⁺.

The SrAl₁₂O₁₉:Eu²⁺ exhibited a PL band at around 400 nm under excitation at 272 nm, according to published literatures.^[2,3] However, $K_{0.80}Sr_{0.10}Al_{11}O_{17+d}$: 0.2Eu²⁺ has no PL and PLE spectra that are similar to SrAl₁₂O₁₉:Eu²⁺. This phenomenon indicates that the formation of a small amount of SrAl₁₂O₁₉:Eu²⁺ does not influence the PL profile of $K_{0.90-x}Sr_xAl_{11}O_{17+d}$: 0.2Eu²⁺.

[1] X. Zhang, M.-H. Fang, Y.-T. Tsai, A. Lazarowska, S. Mahlik, T. Lesniewski, M. Grinberg, W. K. Pang, F. Pan, C. Liang, W. Zhou, J. Wang, J.-F. Lee, B.-M. Cheng, T.-L. Hung, Y.-Y. Chen, R.-S. Liu, *Chem. Mater.*, 2017, 29, 6781-6792
[2] D. Zhang, L. Zhang, Y. Zhang, S. Lu, and Y. i. Wang, *Neurophysical and Physical Letters*, 2007, 18

[2] R. Zhong, J. Zhang, X. Zhang, S. Lu and X.-j. Wang, *Nanotechnology*, 2007, 18, 445707.

[3] R. Zhong, J. Zhang, X. Zhang, S. Lu, X. Ren and X.-j. Wang, J. Phys. D: Appl. Phys., 2018, 41, 065104.