Supporting information for:

Grain engineered polar-axis-oriented epitaxial Mn₂Mo₃O₈ films with higher magnetic transition temperature

Shishin Mo¹, Tsukasa Katayama^{2,3*}, Akira Chikamatsu⁴ and Tetsuya Hasegawa¹

¹Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan

²Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, 001-0020,

Japan

³JST-PRESTO, Kawaguchi, Saitama 332-0012, Japan

⁴Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku,

Tokyo 112-8610, Japan

E-mail: katayama@es.hokudai.ac.jp

Table S1. Lattice constants of MMO films on YSZ(111) substrates.

Thickness (nm)	15	20	35	52	100	Bulk ¹
<i>a</i> (Å)	5.83	5.82	5.83	5.81	5.80	5.8003
<i>c</i> (Å)	10.25	10.22	10.21	10.17	10.19	10.2425

Table S2. Lattice constants, T_N and V_f for bulk MMO and MMO films deposited on Al₂O₃ and YSZ

substrates.

	a (Å)	<i>c</i> (Å)	$T_{\rm N}$ (K)	$V_{\rm f}$ (%)
Bulk MMO	5.8003	10.2425	41	0
140-nm-thick MMO film on Al ₂ O ₃ substrate	5.83	10.17	108	0
35-nm-thick MMO film on YSZ substrate	5.83	10.21	122	2
100-nm-thick MMO film on YSZ substrate	5.80	10.19	163	44

Figure S1. Out-of-plane $2\theta - \theta$ XRD patterns of the MMO films on YSZ(111) substrates.

Figure S2. AFM image of the 52-nm-thick MMO film on YSZ(111) substrate.

Figure S3. AFM image of the MMO film on $Al_2O_3(001)$ substrate.

Reference

1 H. Abe, A. Sato, N. Tsujii, T. Furubayashi and M. Shimoda, J. Solid State Chem., 2010, 183,

379–384.