Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Electronic supplementary information (ESI)

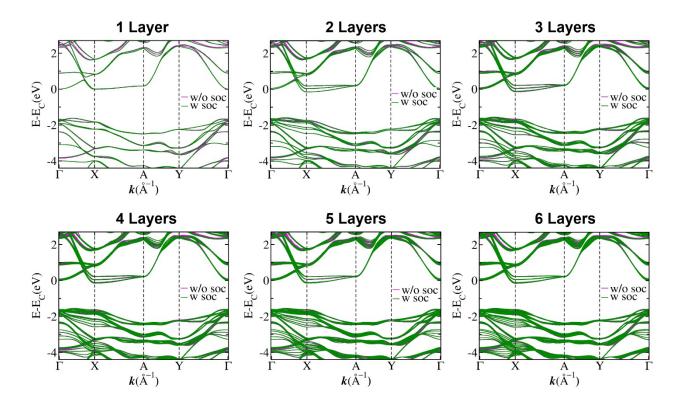
Electronic transport and polarization-dependent photoresponse in few-layered hafnium trisulfide (HfS₃) nanoribbons

Alexey Lipatov,^{1,2,3}* Jehad Abourahma,¹ Gauthami Viswan,⁴ Khimananda Acharya,⁵ Tula R. Paudel,⁵* Michael J. Loes,¹ Saman Bagheri,¹ Alpha T. N'Diaye,⁶ Esha Mishra,⁴ Thilini Kumari Ekanayaka,⁴ Mohammad Zaz,⁴ Jack Rodenburg,⁴ Archit Dhingra,⁴ Robert Streubel,^{4,7} Peter A. Dowben,^{4,7} and Alexander Sinitskii^{1,7}*

¹ Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA

² Department of Chemistry, Biology and Health Sciences, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA

³ Karen M. Swindler Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA


⁴ Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588, USA

⁵ Department of Physics, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA

⁶ Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

⁷ Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588, USA

^{*}E-mails: alexey.lipatov@sdsmt.edu, tula.paudel@sdsmt.edu, sinitskii@unl.edu

Figure S1. A comparison of the band structures of infinite two-dimensional HfS₃ crystals consisting of 1, 2, 3, 4, 5 and 6 monolayers. The band structures were calculated with (green) and without (red) the effect of spin-orbit coupling (SOC).