Supplementary Materials for

Color modulation of cerium sulfide colorant powders through chemical doping engineering

Hongbin Zhang,¹ Jiasong Zhang,² Renguang Ye,^{1*} Shiqing Xu,¹ Gongxun Bai^{1*}

1 Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.

2 Hunan Kela Materials Co., Ltd, Changsha 410001, China.

E-mail address: baigx@cjlu.edu.cn (G. Bai), 15a0502098@cjlu.edu.cn (R. Ye)

Figure S1. The Thermal stability analysis of core-shell γ -Ce₂S₃@ZnO powder in the atmosphere.

Figure S2. The emission spectrum of γ -Ce₂S₃ under 365 nm excitation.

Figure S3. (a) The emission spectra of LED devices with γ -La_{0.5}Ce_{1.5}S₃ colorant and γ -Ce₂S₃ colorant. (b) The emission spectrum of LED device with γ -Ce₂S₃@ZnO colorant.

Figure S4. The reflectance spectra of red films in the range of 200-2500 nm. The inset shows a photo of the prepared red film.