Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Contents

- p.S2 General Information
- p.S3–S5 Synthetic Details
- p.S6–S8 NMR Spectra
- p.S9–S11 X-ray Crystal Analyses
- p.S12 Electrochemistry
- p.S13–S19 Photophysical Properties
- p.S20–S42 DFT Calculations

General Information

All the purchased reagents were of standard quality and used without further purification. Dichloromethane used as reaction solvent were purchased from Nacalai Tesque Co., Inc. Benzo[b]phenothiazine (BPT) was synthesized by solid-state condensation of oaminothiophenol and 2,3-dihydroxynaphthalene by modifying the reported procedure.^{S1} All the reactions were carried out under N₂ atmosphere. Flash chromatography was performed with a Biotage Isorela medium pressure liquid chromatography (MPLC) system and a SNAP Sfär flash silica gel cartridge (Biotage). ¹H and ¹³C NMR spectra were recorded by a Varian 400-MR FT-NMR spectrometer. Low- and high-resolution fast atom bombardment (FAB+) mass spectra (MS) were obtained on a JEOL JMS-700 mass spectrometer. UV-Vis-NIR absorption spectra were obtained with a JASCO V-670 spectrometer. Emission spectra were measured with a Shimadzu RF-6000 spectrofluorometer with a UNISOKU CoolSpeK cryostat. Absolute emission quantum yields at room temperature were measured with a Shimadzu RF-6000 spectrofluorometer with an integrating sphere. Absolute photoluminescence quantum yields at 77 K were measured with a Hamamatsu Photonics Quantaurus-QY Plus C13534-01 and a sample holder for low temperature A11238-05. Fluorescence lifetimes were measured with a Horiba FluoroCube spectrofluorometer system. Phosphorescence lifetimes were measured with a Shimadzu RF-6000 spectrofluorometer. Cyclic voltammetry and differential pulse voltammetry were measured in BAS Electrochemical Analyzer ALS Model 612B. Circular dichroism (CD) spectra were recorded on a JASCO J-820 spectropolarimeter. Circularly polarized luminescence (CPL) spectra were recorded on a JASCO CPL-200S. Low-temperature CPL spectra were measured with a JASCO CPL-200S equipped with a UNISOKU CoolSpeK cryostat. Films of 1 and 2 doped in β - estradiol were prepared according to the literature.^{S2} **1** and **2** were dissolved in melted β estradiol (mass fraction of 0.3 %) at 200 °C, and the mixture was spread between two quartz substrates at 200 °C. The substrates were cooled to room-temperature to give transparent films.

[S1] X. Pan, C. Fang, M. Fantin, N. Malhotra, W. Y. So, L. A. Peteanu, A. A. Isse, A. Gennaro, P. Liu and K. Matyjaszewski, K. J. Am. Chem. Soc., 2016, 138, 2411–2425.
[S2] S. Hirata and M. Vacha, J. Phys. Chem. Lett. 2016, 7, 1539–1545.

Synthetic Details

Scheme S1. Synthesis of 2.

3: To a solution of 12*H*-Benzo[*b*]phenothiazine (**BPT**) (1.24 g, 5 mmol) in CH₂Cl₂ (800 mL) was added DDQ (0.57 g, 2.5 mmol), and the solution was kept stirring for 18 h under N₂ atmosphere at rt. The reaction mixture was quenched by adding hydrazine hydrate (ca. 2 mL), and extracted with CH₂Cl₂. The organic layer was dried over Na₂SO₄, and the solvent was removed under reduced pressure. The crude product was chromatographed on silica gel (hexane/dichloromethane as eluent) to afford **3** (0.74 g, 60%) as yellow powder. ¹H NMR (400 MHz, dichloromethane-*d*₂): δ = 7.72–7.70 (m, 1H), 7.66–7.58 (m,

4H), 7.32–7.27 (m, 2H), 7.26–7.16 (m, 4H), 7.02 (dd, J_1 = 7.8 Hz, J_2 = 1.6 Hz, 1H), 6.93– 6.78 (m, 5H), 6.54 (s, 1H), 6.48 (dd, J_1 = 7.8 Hz, J_2 = 1.2 Hz, 1H), 6.29 (dd, J_1 = 7.8 Hz, J_2 = 1.6 Hz, 1H); ¹³C NMR spectrum was not recorded due to low solubility; HRMS FAB⁺ (Matrix = 3-Nitrobenzyl alcohol) (C₃₂H₂₀N₂S₂): Found 496.1031; Calcd. 496.1068.

2 (from **3**): To a solution of **3** (99.3 mg, 0.2 mmol) in CH₂Cl₂ (450 ml), was added DDQ (23 mg, 0.1 mmol) and Sc(OTf)₃ (49 mg, 0.1 mmol), and the solution was kept stirring for 18 h under N₂ atmosphere. To the reaction solution, DDQ (23 mg, 0.1 mmol) and Sc(OTf)₃ (49 mg, 0.1 mmol) were added and kept stirring for 18 h. The reaction mixture was quenched by adding hydrazine hydrate (1 mL) and was extracted with CH₂Cl₂. The organic layer was dried over Na₂SO₄, and the solvent was removed under reduced pressure. The crude product was reprecipitated with CH₂Cl₂ as good solvent and hexane as poor solvent for several times until TLC showed only one spot to afford **2** (59.3 mg, 60%) as yellow powder: ¹H NMR (400 MHz, dichloromethane-*d*₂): δ = 7.74 (d, *J* = 8.2 Hz, 2H), 7.67 (s, 2H), 7.44 (dd, *J*₁ = 7.6 Hz, *J*₂ = 1.6 Hz, 2H), 7.36–7.29 (m, 4H), 7.20 (t, *J* = 8.0 Hz 2H), 7.05 (t, *J* = 7.8 Hz, 2H), 6.95 (t, *J* = 7.8 Hz, 2H), 6.45 (dd, *J*₁ = 8.2 Hz, *J*₂ = 1.4 Hz, 2H); ¹³C NMR (100 MHz, CH₂Cl₂): δ = 145.24, 137.39, 132.09, 122.78, 117.75; HRMS FAB⁺ (Matrix = 3-Nitrobenzyl alcohol) (C₃₂H₁₈N₂S₂): Found 494.0912; Calcd. 494.0911.

2 (from **BPT**): To a solution of **BPT** (1.24 g, 5.0 mmol) in CH_2Cl_2 (700 ml) was added DDQ (0.57 g, 2.5 mmol), and the solution was kept stirring for 5 h under N₂ atmosphere. After checking the formation of **3** by TLC, DDQ (0.28 g, 1.25 mmol) and Sc(OTf)₃ (0.62

g, 1.25 mmol) were added to the reaction solution and kept stirring for 18 h. DDQ (0.28 g, 1.25 mmol) and Sc(OTf)₃ (0.62 g, 1.25 mmol) were added again to the reaction solution and kept stirring for another 18 h. The reaction mixture was quenched by adding hydrazine hydrate (3 mL) and was extracted with CH_2Cl_2 . The crude product was reprecipitated with CH_2Cl_2 as good solvent and hexane as poor solvent for several times until TLC showed only one spot to afford **2** (0.42 g, 34%) as yellow powder.

Fig. S1 ¹H NMR spectra of 3 in dichloromethane- d_2 . a) 0–10 ppm and b) aromatic region. Asterisk denotes the solvent residual peak.

Fig. S2 ¹H NMR spectra of **2** in dichloromethane- d_2 . a) 0–10 ppm and b) aromatic region. Asterisk denotes the solvent residual peak.

Fig. S3 ¹³C NMR spectra of 2 in dichloromethane- d_2 . a) 0–200 ppm and b) aromatic region. Asterisk denotes the solvent residual peak.

X-ray Crystallography

The single crystal of *rac*-2 was obtained by the slow diffusion of hexane vapor into a toluene solution of racemic 2. Data collections were performed on a Rigaku R-AXIS RAPID diffractometer with Mo-K α radiation at 173 K. The hydrogen atoms were refined using the riding model. All the calculations were performed by using CrystalStructure crystallographic software package,^{S2} except for refinement, which was performed by using SHELXL Version 2017/1.^{S3} The CIF file has been deposited on the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers CCDC 2103647.

[S2] CrystalStructure 4.3: Crystal Structure Analysis Package, Rigaku Corporation (2000-2018). Tokyo 196-8666, Japan.

[S3] G. M. Sheldrick, Acta Cryst. A 2008, 64, 112.

 Table S1: X-ray crystallographic data for rac-2.

empirical formula	$C_{32}H_{18}N_2S_2$
formula weight	494.63
T [°C]	-100
λ[Å]	0.71075
crystal system	tetragonal
space group	$I 4_1/a$
Ζ	8
a [Å]	20.735(3)
<i>c</i> [Å]	10.5694(7)
<i>V</i> [Å ³]	4544.1(9)
$ ho_{ m calcd} [m g cm^{-3}]$	1.446
collected data	20753
unique data / R _{int}	2580/0.0420
no. of parameters	163
goodness-of-fit ^[a]	1.044
<i>R</i> 1 ($I > 2\sigma$), <i>wR</i> 2 (all reflections) ^[b]	0.0338, 0.0829
residual density [e Å ⁻³]	0.31/-0.25

[a] GOF = $\left\{ \sum \left[w \left(F_0^2 - F_c^2 \right)^2 \right] / (n-p) \right\}^2$, where *n* and *p* denote the number of data and parameters.

[b]
$$R1 = \sum (\|F_0\| - \|F_c\|) / \sum \|F_0\|$$
 and $wR2 = \left\{ \sum \left[w (F_0^2 - F_c^2)^2 \right] / \sum \left[w (F_0^2)^2 \right] \right\}^2$ where
 $w = 1 / \left[\sigma^2 (F_0^2) + (a \cdot P)^2 + b \cdot P \right]$ and $P = \left[(Max; 0, F_0^2) + 2 \cdot F_c^2 \right] / 3$.

Fig. S4 Bond lengths of (a) 1 (two crystallographically independent molecules) and (b) 2 in their racemic crystals.

Fig. S5 Cyclic voltammogram of **2** in dichloromethane $(1 \times 10^{-3} \text{ M})$ containing 0.1 M *n*Bu₄NBF₄ at 298 K.

Table S2. Oxidation potentials (V vs. Fc^{0}/Fc^{1+}) of **1** and **2** in CH₂Cl₂ (0.1 M *n*Bu₄NBF₄). Scan rate = 100 mVs⁻¹.

Fig. S6 Emission spectrum ($\lambda_{ex} = 400 \text{ nm}$) of **1** in 2-MTHF at 78 K.

Fig. S7 Emission decay curves of 1 at 567 nm in 2-MTHF at 78 K ($\lambda_{ex} = 400$ nm). Emission intensity was measured every 20 ms.

Fig. S8 (a) Emission decay curves of **1** at 621 nm in 2-MTHF at 78 K ($\lambda_{ex} = 400$ nm) and (b) fitting of a decay curve. Emission intensity was measured every 20 ms.

Fig. S9 Emission decay curves of **1** at 682 nm in 2-MTHF at 78 K ($\lambda_{ex} = 400$ nm) and (b) fitting of a decay curve. Emission intensity was measured every 20 ms.

Fig. S10 Temperature dependence of the emission spectra ($\lambda_{ex} = 365 \text{ nm}$) of **2** in 2-MTHF from 293 K to 93 K.

Fig. S11 Emission spectrum ($\lambda_{ex} = 400 \text{ nm}$) of 2 in 2-MTHF at 78 K.

Fig. S12 Emission decay curves of **2** at 594 nm in 2-MTHF at 78 K ($\lambda_{ex} = 400$ nm) and (b) fitting of a decay curve. Emission intensity was measured every 20 ms.

Fig. S13 Emission spectra ($\lambda_{ex} = 365$ nm) of polycrystalline 1 measured in air (dashed line) and under vacuum (solid line) at room temperature.

Fig. S14 Emission spectra ($\lambda_{ex} = 365 \text{ nm}$) of polycrystalline 2 measured in air (dashed line) and under vacuum (solid line) at room temperature.

Fig. S15 Emission decay curves of 1 at 621 nm in β -estradiol (0.3wt%) at room temperature ($\lambda_{ex} = 365$ nm) and (b) fitting of a decay curve. Emission intensity was measured every 20 ms.

Fig. S16 Emission decay curves of 1 at 500 nm in β -estradiol (0.3wt%) at room temperature ($\lambda_{ex} = 375$ nm). Black line denotes the curve of best fit by a biexponential functions. The area-weighted ratio ($A_n\tau_n$) are shown in parentheses. The intensityweighted mean emission lifetime $\langle \tau_l \rangle$ was calculated as follows: $\langle \tau_l \rangle = \Sigma (A_n \tau_n^2) / \Sigma (A_n \tau_n)$ where A_n is the coefficient of exponential function of the n-th component.

Fig. S17 Emission decay curves of 2 at 594 nm in β -estradiol (0.3wt%) at room temperature ($\lambda_{ex} = 365$ nm) and (b) fitting of a decay curve. Emission intensity was measured every 20 ms.

Fig. S18 Emission decay curves of 2 at 480 nm in β -estradiol (0.3wt%) at room temperature ($\lambda_{ex} = 375$ nm). Black line denotes the curve of best fit by a biexponential functions. The area-weighted ratio ($A_n\tau_n$) are shown in parentheses. The intensity-weighted mean emission lifetime $\langle \tau_l \rangle$ was calculated as follows: $\langle \tau_l \rangle = \Sigma (A_n \tau_n^2) / \Sigma (A_n \tau_n)$ where A_n is the coefficient of exponential function of the n-th component.

Fig. S19 Fitting of the emission spectrum of 2 doped in β -estradiol measured under ambient conditions with four Gaussian functions. The ratio of the area of fluorescence (cyan) to phosphorescence (yellow) was 13:87.

Fig. S20 Emission spectra ($\lambda_{ex} = 365 \text{ nm}$) of (a) 1 and (b) 2 dispersed in PMMA (1wt%) measured at room temperature in air (dashed line) and under vacuum (solid line) and photographs of the films of (c) 1 and (d) 2 taken under irradiation with UV light at 365 nm.

DFT Calculations

All the DFT calculations were carried out by using Gaussian 16 program package (Revision C.01) at the B3LYP-GD3BJ/6-311G(2d,p) level of theory.

Fig. S21 Frontier Kohn-Sham molecular orbitals of **BPO** and **BPT** calculated at the B3LYP-GD3BJ/6-311G(2d,p) level.

Fig. S22 TD-DFT calculated electronic transitions of (a) **1** and (b) **2** calculated at the B3LYP-GD3BJ/6-311G(2d,p) level.

state	symmetry	energy	configura	ations
$S_1 @ S_1$	А	1.9536 eV (634.63 nm)	$HOMO \rightarrow LUMO$	0.70411 (99.2%)
$T_1 @ T_1$	А	1.4521 eV (853.83 nm)	$HOMO \rightarrow LUMO$	0.68519 (93.9%)
$T_2 @ T_2$	В	2.1261 eV (583.16 nm)	$HOMO-3 \rightarrow LUMO$	-0.22342 (10.0%)
			$HOMO-2 \rightarrow LUMO+1$	-0.15724 (4.9%)
			HOMO−1→LUMO	-0.32892 (21.6%)
			HOMO→LUMO+1	0.53012 (56.2%)

 Table S3: Exited states of 1 calculated at the B3LYP-GD3BJ/6-311G(2d,p) level.

Table S4: Exited states of 2 calculated at the B3LYP-GD3BJ/6-311G(2d,p) level.

state	symmetry	energy	configura	tions
$S_1 @ S_1$	А	2.1499 eV (576.70 nm)	$HOMO \rightarrow LUMO$	0.70370 (99.0%)
$T_1 @ T_1$	А	1.6560 eV (748.70 nm)	$HOMO-3 \rightarrow LUMO+1$	-0.11589 (2.7%)
			HOMO−2→ LUMO	-0.11028 (2.4%)
			HOMO−1→LUMO+1	0.10600 (2.2%)
			HOMO→LUMO	0.66872 (89.4%)
$T_2 @ T_2$	В	2.1457 eV (577.82 nm)	$HOMO-3 \rightarrow LUMO$	-0.24068 (11.8%)
			$HOMO-2 \rightarrow LUMO+1$	-0.17010 (7.1%)
			HOMO−1→LUMO	0.27650 (21.2%)
			HOMO→LUMO+1	0.53687 (52.6%)

Fig. S23 Energy diagrams for the racemization of 2 calculated at B3LYP/6-31G(d) level.

Table S5. Summary of the results of TD-DFT calculations of 2 at the B3LYP-GD3BJ/6-311G(2d,p) level.

compound ^{a)} (transition)	Energy / nm	µ / 10 ^{−20} esu·cm	<i>m</i> / 10 ⁻²⁰ erg· G ⁻¹	$\cos heta_{\mu,m}$	$D / 10^{-40}$ esu ² · cm ²	$G / 10^{-40}$ $erg^2 \cdot G^{-2}$	$R^{b)}/10^{-40}$ esu·esu· cm·G ⁻¹	f	gCD or gCPL (theoretical)
$2 (S_0 \rightarrow S_1)$	459	37.3	1.25	1.0	1394	1.55	46.5	1.5×10 ⁻³	0.133
$2 (S_1 \rightarrow S_0)$	577	18.1	1.43	1.0	328	2.04	25.9	3.1×10 ⁻⁴	0.313

^{a)} (*M*, *M*)-isomer, ^{b)} $|\boldsymbol{\mu}| |\boldsymbol{m}| \cos \theta_{\mu,m}$

Fig. S24 TEDM and TMDM of (M, M)-2 in the S₀ state calculated at the B3LYP-GD3BJ/6-311G(2d,p) level.

Fig. S25 TEDM and TMDM of (M, M)-2 in the S₁ state calculated at the B3LYP-GD3BJ/6-311G(2d,p) level.

Optical resolution of 2

Optical resolution of 2 was carried out under the following two conditions.

HPLC (JAI LaboACE LC-5060) equipped with a DAICEL CHIRALPAK-IE column (1 cm (i.d.) \times 25 cm), eluent: *n*-hexane/toluene (2/1, v/v), flow rate: 1.4 mL/min, amount of sample: 0.5 mg)

Fig. S26 Chromatograms for the enantiomers of 2 with HPLC.

Fig. S27 (a) CD spectra of 2 doped in β -estradiol at room temperature.

Fig. S28 Emission (black) and CPL (red) spectra of (M,M)-2 doped in β -estradiol simultaneously measured with a CPL spectrometer at room temperature.

Fig. S29 (a) CPL spectra and (b) g_{CPL} of 2 in 2-MTHF at 83 K ($\lambda_{ex} = 365$ nm).

(*M*,*M*)-1 (S₀@S₀), *C*₂ symmetry, B3LYP-GD3BJ/6-311G(2d,p)

0	-1.102286	3.456372	-0.813700
Ν	0.524313	1.274042	-0.623349
Ν	-0.524313	-1.274042	-0.623349
0	1.102286	-3.456372	-0.813700
С	0.000470	3.523311	0.019364
С	0.248851	4.687138	0.682114
С	1.390370	4.809117	1.511859
С	1.696970	6.003755	2.201077
С	2.804351	6.085040	3.007167
С	3.656231	4.971852	3.157957
С	3.386272	3.798736	2.500595
С	2.251875	3.681386	1.663920
С	1.951346	2.481354	0.977870
С	0.864228	2.400194	0.144985
С	-0.850824	1.074050	-0.841906
С	-1.390370	-0.189944	0.909620
С	-2.735761	-0.359848	1.351453
С	-3.297638	-1.618921	1.670568
С	-4.604949	-1.725115 -	2.071665
С	-5.418242	-0.579916	2.172770
С	-4.894379	0.657743	-1.904175
С	-3.545358	0.810421	-1.508185
С	-2.991626	2.093906	-1.283147
С	-1.665620	2.213555	-0.988674
С	0.850824	-1.074050	-0.841906
С	1.390370	0.189944	-0.909620
С	2.735761	0.359848	-1.351453
С	3.297638	1.618921	-1.670568
С	4.604949	1.725115	-2.071665
С	5.418242	0.579916	-2.172770
С	4.894379	-0.657743	-1.904175
С	3.545358	-0.810421	-1.508185
С	2.991626	-2.093906	-1.283147
С	1.665620	-2.213555	-0.988674

С	-0.000470 -3.523311 0.019364
С	-0.248851 - 4.687138 0.682114
С	-1.390370 -4.809117 1.511859
С	-1.696970 -6.003755 2.201077
С	-2.804351 -6.085040 3.007167
С	-3.656231 -4.971852 3.157957
С	-3.386272 -3.798736 2.500595
С	-2.251875 -3.681386 1.663920
С	-1.951346 -2.481354 0.977870
С	-0.864228 -2.400194 0.144985
Η	$-3.603549\ 2.981982$ -1.370317
Η	$-5.505513\ 1.546946$ -2.006161
Η	-6.452239 -0.678267 -2.479375
Η	-5.012188 -2.697789 -2.318038
Η	-2.684426 -2.504796 -1.610120
Η	$2.607204 \ 1.629342 \ 1.090249$
Η	4.041636 2.942633 2.612147
Η	4.528415 5.047197 3.795801
Η	3.028009 7.006486 3.530563
Η	1.040011 6.857898 2.082844
Η	$-0.433021\ 5.518738$ 0.556993
Η	2.684426 2.504796 -1.610120
Η	5.012188 2.697789 -2.318038
Η	6.452239 0.678267 -2.479375
Η	5.505513 -1.546946 -2.006161
Η	3.603549 -2.981982 -1.370317
Η	0.433021 -5.518738 0.556993
Η	-1.040011 -6.857898 2.082844
Η	-3.028009 -7.006486 3.530563
Η	-4.528415 -5.047197 3.795801
Η	-4.041636 -2.942633 2.612147
Н	-2.607204 -1.629342 1.090249

(*M*,*M*)-1 (S₁@S₁), *C*₂ symmetry, B3LYP-GD3BJ/6-311G(2d,p)

0	-1.210919	3.453815	-0.590159
Ν	0.507405	1.276924	-0.521808
Ν	-0.507405	-1.276924	0.521808
0	1.210919	-3.453815	-0.590159
С	-0.015124	3.569422	0.067002
С	0.297894	4.767659	0.642539
С	1.514222	4.932024	1.344175
С	1.881472	6.157712	1.944310
С	3.058802	6.272466	2.638918
С	3.926129	5.166351	2.766963
С	3.599279	3.963913	2.197656
С	2.391756	3.811513	1.473673
С	2.040792	2.587916	0.870037
С	0.879008	2.467529	0.142629
С	-0.857335	1.078987	-0.690123
С	-1.378029	-0.234881 -	0.823541
С	-2.735967	-0.416406 -	1.252525
С	-3.257324	-1.646012 -	1.698777
С	-4.584120	-1.768177 -	2.072827
С	-5.432552	-0.659952 -	2.023925
С	-4.936488	0.572314	-1.644787
С	-3.586172	0.737050	-1.277271
С	-3.058802	2.022477	-0.971810
С	-1.718876	2.178003	-0.729241
С	0.857335	-1.078987	-0.690123
С	1.378029	0.234881	-0.823541
С	2.735967	0.416406	-1.252525
С	3.257324	1.646012	-1.698777
С	4.584120	1.768177	-2.072827
С	5.432552	0.659952	-2.023925
С	4.936488	-0.572314	-1.644787
С	3.586172	-0.737050	-1.277271
С	3.058802	-2.022477	-0.971810
С	1.718876	-2.178003	-0.729241

С	0.015124 - 3.569422 0.067002
С	-0.297894 -4.767659 0.642539
С	-1.514222 -4.932024 1.344175
С	-1.881472 -6.157712 1.944310
С	-3.058802 -6.272466 2.638918
С	-3.926129 -5.166351 2.766963
С	-3.599279 -3.963913 2.197656
С	-2.391756 -3.811513 1.473673
С	-2.040792 -2.587916 0.870037
С	-0.879008 - 2.467529 0.142629
Η	$-3.693887 \ 2.896994 \ -1.007075$
Η	-5.581781 1.442878 -1.640296
Η	$\hbox{-}6.474189 \hbox{-}0.761077 \hbox{-}2.303174$
Η	-4.959012 -2.727025 -2.407833
Η	-2.612577 -2.510082 -1.757699
Η	2.704504 1.741885 0.963983
Η	4.263134 3.112094 2.286500
Η	4.853111 5.273414 3.316368
Η	3.328168 7.217877 3.093584
Η	1.215710 7.007356 1.847605
Η	$-0.408732\ 5.583754\ 0.563526$
Η	2.612577 2.510082 -1.757699
Η	4.959012 2.727025 -2.407833
Η	6.474189 0.761077 -2.303174
Η	5.581781 -1.442878 -1.640296
Η	3.693887 -2.896994 -1.007075
Η	0.408732 -5.583754 0.563526
Η	-1.215710 -7.007356 1.847605
Η	-3.328168 -7.217877 3.093584
Η	-4.853111 -5.273414 3.316368
Η	-4.263134 -3.112094 2.286500
Н	-2.704504 -1.741885 0.963983

(1,1,1,1)	(1), 020		0252010 5110(2
0	-2.403794	2.760883	-0.062366
Ν	-0.000807	1.376733	-0.010173
Ν	0.000807	-1.376733	-0.010173
0	2.403794	-2.760883	-0.062366
С	-1.329432	3.29771	0.600493
С	-1.494945	4.526533	1.218411
С	-0.440372	5.086487	1.927355
Н	-0.566927	6.049245	2.405536
С	0.762411	4.397865	2.043033
С	0.927759	3.168081	1.422728
С	-0.105393	2.625502	0.662579
С	-1.197023	0.687754	-0.166248
С	-1.197023	-0.734429	-0.295331
С	-2.390601	-1.403275	-0.726775
С	-2.416055	-2.736583	-1.176874
С	-3.602477	-3.341085	-1.559525
С	-4.79835	-2.626662	-1.517447
С	-4.793867	-1.295473	-1.131113
С	-3.607219	-0.648794	-0.752896
С	-3.593281	0.746586	-0.439792
С	-2.406251	1.385918	-0.20286
С	1.197023	-0.687754	-0.166248
С	1.197023	0.734429	-0.295331
С	2.390601	1.403275	-0.726775
С	2.416055	2.736583	-1.176874
С	3.602477	3.341085	-1.559525
С	4.79835	2.626662	-1.517447
С	4.793867	1.295473	-1.131113
С	3.607219	0.648794	-0.752896
С	3.593281	-0.746586	-0.439792
С	2.406251	-1.385918	-0.20286
С	1.329432	-3.29771	0.600493
С	1.494945	-4.526533	1.218411
С	0.440372	-5.086487	1.927355

(*M*,*M*)-1 (T₁@T₁), *C*₂ symmetry, B3LYP-GD3BJ/6-311G(2d,p)

Η	0.566927	-6.049245	2.405536
С	-0.762411	-4.397865	2.043033
С	-0.927759	-3.168081	1.422728
С	0.105393	-2.625502	0.662579
Η	-4.507368	1.323076	-0.475259
Η	-5.715709	-0.725698	-1.132411
Η	-5.727369	-3.102772	-1.805953
Η	-3.593467	-4.370173	-1.896222
Η	-1.495734	-3.2991	-1.231403
Η	1.859555	2.630948	1.511476
Η	-2.456775	5.015875	1.140913
Η	1.495734	3.2991	-1.231403
Н	3.593467	4.370173	-1.896222
Η	5.727369	3.102772	-1.805953
Н	5.715709	0.725698	-1.132411
Η	4.507368	-1.323076	-0.475259
Η	2.456775	-5.015875	1.140913
Η	-1.859555	-2.630948	1.511476
Η	1.577821	4.815268	2.619026
Н	-1.577821	-4.815268	2.619026

$(M,M)-1$ (T ₂ (a,T_2),	C_2 symmetry.	B3LYP-GD3BJ/6-311G(2d,p)
(1,2,2,1) = (1,2,2),	<i>e</i> ² <i>s</i> ^j <i>mmen</i> ^j ,	

0	-2.369048	2.761261	-0.157173
Ν	-0.000611	1.368968	0.07683
Ν	0.000611	-1.368968	0.07683
0	2.369048	-2.761261	-0.157173
С	-1.347649	3.276851	0.617984
С	-1.552425	4.4935	1.240358
С	-0.536408	5.051929	2.011779
Н	-0.690803	6.010552	2.489631
С	0.663786	4.370126	2.175319
С	0.865778	3.141761	1.560199
С	-0.131037	2.594473	0.753412
С	-1.197737	0.674927	-0.177718
С	-1.203421	-0.737687	-0.261671
С	-2.369048	-1.414447	-0.727097
С	-2.395602	-2.780575	-1.078903
С	-3.572707	-3.387312	-1.508193
С	-4.751085	-2.65572	-1.598886
С	-4.749286	-1.297763	-1.291051
С	-3.575459	-0.646444	-0.871661
С	-3.56404	0.750367	-0.617221
С	-2.375134	1.390616	-0.315713
С	1.197737	-0.674927	-0.177718
С	1.203421	0.737687	-0.261671
С	2.369048	1.414447	-0.727097
С	2.395602	2.780575	-1.078903
С	3.572707	3.387312	-1.508193
С	4.751085	2.65572	-1.598886
С	4.749286	1.297763	-1.291051
С	3.575459	0.646444	-0.871661
С	3.56404	-0.750367	-0.617221
С	2.375134	-1.390616	-0.315713
С	1.347649	-3.276851	0.617984
С	1.552425	-4.4935	1.240358
С	0.536408	-5.051929	2.011779

Η	0.690803	-6.010552	2.489631
С	-0.663786	-4.370126	2.175319
С	-0.865778	-3.141761	1.560199
С	0.131037	-2.594473	0.753412
Η	-4.471321	1.332604	-0.705433
Η	-5.657673	-0.715528	-1.389408
Η	-5.66703	-3.135009	-1.921227
Η	-3.562982	-4.437971	-1.77014
Η	-1.489462	-3.364142	-1.027974
Η	1.79714	2.608886	1.685186
Η	-2.504981	4.988951	1.105936
Η	1.489462	3.364142	-1.027974
Η	3.562982	4.437971	-1.77014
Η	5.66703	3.135009	-1.921227
Η	5.657673	0.715528	-1.389408
Η	4.471321	-1.332604	-0.705433
Η	2.504981	-4.988951	1.105936
Η	-1.79714	-2.608886	1.685186
Η	1.450558	4.791977	2.787378
Η	-1.450558	-4.791977	2.787378

(*M*,*M*)-**2** (S₀@S₀), *C*₂ symmetry, B3LYP-GD3BJ/6-311G(2d,p)

-2.515282 5.182951 -0.492904
-0.000350 1.374454 -0.104862
0.000350 -1.374454 -0.104862
2.315282 -3.182931 -0.492904
-1.103010 3.324180 0.804122
-1.181882 4.357237 1.730315
-0.184399 4.516460 2.683976
-0.240801 5.333442 3.391766
0.873389 3.615404 2.731288
0.939171 2.560056 1.832352
-0.038733 2.415679 0.850149
-1.203896 0.682551 -0.374376
-1.203896 -0.692739 -0.415980
-2.366118 -1.397310 -0.842654
-2.382778 -2.794205 -1.065634
-3.536980 -3.427672 -1.448447
-4.731797 -2.700212 -1.622313
-4.741539 -1.343142 -1.435168
-3.566317 -0.652212 -1.055802
-3.558173 0.753096 -0.893357
-2.393234 1.410050 -0.599177
1.203896 -0.682551 -0.374376
1.203896 0.692739 -0.415980
2.366118 1.397310 -0.842654
2.382778 2.794205 -1.065634
3.536980 3.427672 -1.448447
4.731797 2.700212 -1.622313
4.741539 1.343142 -1.435168
3.566317 0.652212 -1.055802
3.558173 -0.753096 -0.893357
2.393234 -1.410050 -0.599177
1.103010 -3.324180 0.804122
1.181882 -4.357237 1.730315
0.184399 -4.516460 2.683976
-1.647860 -3.724223 3.480082

C -0.873389 -3.615404 2.731288 C -0.939171 -2.560056 1.832352 C 0.038733 -2.415679 0.850149 H -4.478121 1.308927 -1.024689 Н -5.650983 -0.773079 -1.585627 Н -5.637905 -3.215784 -1.915664 Н -3.529517 -4.496372 -1.623641 Н -1.470857 -3.360373 -0.945443 1.755451 1.852103 1.875035 Η Η -2.021941 5.039433 1.692919 Н 1.470857 3.360373 -0.945443 Η 3.529517 4.496372 -1.623641 Н 5.637905 3.215784 -1.915664 Н 5.650983 0.773079 -1.585627 Н 4.478121 -1.308927 -1.024689 H 2.021941 -5.039433 1.692919 Н -1.755451 -1.852103 1.875035 Н 0.240801 -5.333442 3.391766 1.647860 3.724223 3.480082 Η

(*M*,*M*)-2 (S₁@S₁), *C*₂ symmetry, B3LYP-GD3BJ/6-311G(2d,p)

- S -2.405767 3.176678 -0.390639
- N 0.000456 1.365079 -0.041348
- N -0.000456 -1.365079 -0.041348
- S 2.405767 -3.176678 -0.390639
- C -1.046009 3.452979 0.700636
- C -1.007798 4.607857 1.478002
- C 0.062901 4.847220 2.325360
- Н 0.086089 5.750703 2.921076
- C 1.088933 3.910977 2.426797
- C 1.058136 2.758657 1.662194
- C 0.004660 2.530957 0.773231
- C -1.203318 0.705424 -0.267411
- C -1.186834 -0.706262 -0.374823
- C -2.365986 -1.413309 -0.786340
- C -2.372279 -2.775348 -1.137506
- C -3.546614 -3.413056 -1.501462
- C -4.751019 -2.706904 -1.529217
- C -4.768875 -1.358639 -1.228076
- C -3.588514 -0.675182 -0.870727
- C -3.588514 0.723195 -0.622655
- C -2.413352 1.403013 -0.377157
- C 1.203318 -0.705424 -0.267411
- C 1.186834 0.706262 -0.374823
- C 2.365986 1.413309 -0.786340
- C 2.372279 2.775348 -1.137506
- C 3.546614 3.413056 -1.501462
- C 4.751019 2.706904 -1.529217
- C 4.768875 1.358639 -1.228076
- C 3.588514 0.675182 -0.870727
- C 3.588514 -0.723195 -0.622655
- C 2.413352 -1.403013 -0.377157
- C 1.046009 -3.452979 0.700636
- C 1.007798 -4.607857 1.478002
- C -0.062901 -4.847220 2.325360
- Н -1.913973 -4.076129 3.107428

C -1.088933 -3.910977 2.426797 C -1.058136 -2.758657 1.662194 C -0.004660 -2.530957 0.773231 Н -4.519592 1.270142 -0.695847 Н -5.696008 -0.799581 -1.274725 Н -5.669560 -3.212257 -1.801665 Н -3.525269 -4.462626 -1.766308 Н -1.447640 -3.333899 -1.132531 1.851038 2.029093 1.736699 Η Н -1.831406 5.308178 1.420453 Н 1.447640 3.333899 -1.132531 Η 3.525269 4.462626 -1.766308 Н 5.669560 3.212257 -1.801665 Н 5.696008 0.799581 -1.274725 Н 4.519592 -1.270142 -0.695847 H 1.831406 -5.308178 1.420453 Н -1.851038 -2.029093 1.736699 Н -0.086089 -5.750703 2.921076 H 1.913973 4.076129 3.107428

(<i>M</i> , <i>M</i>)- 2 (T ₁ @T ₁), <i>C</i> ₂ symmetry, B3LYP-GD3BJ/6-311G(2d,p)

S	-2.389685	3.173722	-0.471310
Ν	-0.001439	1.370126	-0.090439
Ν	0.001439	-1.370126	-0.090439
S	2.389685	-3.173722	-0.471310
С	-1.070111	3.435769	0.682264
С	-1.076129	4.556600	1.507014
С	-0.037328	4.773987	2.400634
Н	-0.043262	5.655054	3.029506
С	0.991111	3.843254	2.502752
С	0.994292	2.716041	1.696885
С	-0.018385	2.519926	0.758701
С	-1.206460	0.703732	-0.314870
С	-1.192868	-0.719406	-0.394490
С	-2.378372	-1.429978	-0.778582
С	-2.389685	-2.798761	-1.100159
С	-3.570690	-3.443342	-1.438806
С	-4.770771	-2.737182	-1.475561
С	-4.780361	-1.376598	-1.205802
С	-3.599965	-0.693278	-0.871701
С	-3.592949	0.717600	-0.660588
С	-2.410942	1.396593	-0.439048
С	1.206460	-0.703732	-0.314870
С	1.192868	0.719406	-0.394490
С	2.378372	1.429978	-0.778582
С	2.389685	2.798761	-1.100159
С	3.570690	3.443342	-1.438806
С	4.770771	2.737182	-1.475561
С	4.780361	1.376598	-1.205802
С	3.599965	0.693278	-0.871701
С	3.592949	-0.717600	-0.660588
С	2.410942	-1.396593	-0.439048
С	1.070111	-3.435769	0.682264
С	1.076129	-4.556600	1.507014
С	0.037328	-4.773987	2.400634
Н	-1.791625	-3.988839	3.216523

С	-0.991111	-3.843254	2.502752
С	-0.994292	-2.716041	1.696885
С	0.018385	-2.519926	0.758701
Н	-4.521329	1.267163	-0.744979
Н	-5.705955	-0.815912	-1.263048
Н	-5.693063	-3.244439	-1.730549
Н	-3.552749	-4.499387	-1.677225
Н	-1.465435	-3.357796	-1.091463
Н	1.789053	1.988542	1.776428
Н	-1.905270	5.250154	1.446975
Н	1.465435	3.357796	-1.091463
Н	3.552749	4.499387	-1.677225
Н	5.693063	3.244439	-1.730549
Н	5.705955	0.815912	-1.263048
Н	4.521329	-1.267163	-0.744979
Н	1.905270	-5.250154	1.446975
Н	-1.789053	-1.988542	1.776428
Н	0.043262	-5.655054	3.029506
Н	1.791625	3.988839	3.216523

S	-2.333331	3.176876	-0.49735
Ν	0.001604	1.3669	-0.060102
Ν	-0.001604	-1.3669	-0.060102
S	2.333331	-3.176876	-0.49735
С	-1.101188	3.361966	0.774809
С	-1.164675	4.429803	1.662025
С	-0.156723	4.620562	2.599007
Н	-0.201934	5.465312	3.274265
С	0.897144	3.716095	2.672738
С	0.949219	2.628921	1.813231
С	-0.038759	2.454175	0.845405
С	-1.202434	0.695494	-0.360618
С	-1.199647	-0.716167	-0.39869
С	-2.36307	-1.429562	-0.820226
С	-2.375999	-2.815522	-1.059062
С	-3.549265	-3.464463	-1.444295
С	-4.730453	-2.749149	-1.59842
С	-4.74183	-1.372368	-1.39177
С	-3.571988	-0.683447	-1.015127
С	-3.563978	0.722281	-0.846665
С	-2.375999	1.403225	-0.569173
С	1.202434	-0.695494	-0.360618
С	1.199647	0.716167	-0.39869
С	2.36307	1.429562	-0.820226
С	2.375999	2.815522	-1.059062
С	3.549265	3.464463	-1.444295
С	4.730453	2.749149	-1.59842
С	4.74183	1.372368	-1.39177
С	3.571988	0.683447	-1.015127
С	3.563978	-0.722281	-0.846665
С	2.375999	-1.403225	-0.569173
С	1.101188	-3.361966	0.774809
С	1.164675	-4.429803	1.662025
С	0.156723	-4.620562	2.599007
Н	-1.678447	-3.848727	3.410324

С	-0.897144	-3.716095	2.672738
С	-0.949219	-2.628921	1.813231
С	0.038759	-2.454175	0.845405
Н	-4.484298	1.278036	-0.971386
Η	-5.654978	-0.806679	-1.533247
Η	-5.641315	-3.258205	-1.888186
Н	-3.532724	-4.532664	-1.620237
Н	-1.463831	-3.384028	-0.95418
Η	1.760607	1.916826	1.874196
Η	-2.002138	5.113956	1.60775
Η	1.463831	3.384028	-0.95418
Η	3.532724	4.532664	-1.620237
Η	5.641315	3.258205	-1.888186
Η	5.654978	0.806679	-1.533247
Η	4.484298	-1.278036	-0.971386
Η	2.002138	-5.113956	1.60775
Η	-1.760607	-1.916826	1.874196
Η	0.201934	-5.465312	3.274265
Н	1.678447	3.848727	3.410324