Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Temperature invariant lifetime based luminescent manometer on Mn⁴⁺ ions

M. Pieprz¹, M. Runowski,^{2,3} P. Woźny,² J. Xue,⁴ L. Marciniak¹

¹ Institute of Low Temperature and Structure Research, Polish Academy of Sciences,

Okólna 2, 50-422 Wrocław, Poland

²Adam Mickiewicz University, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland

³ Departamento de Física, Instituto de Materiales y Nanotecnología, IUdEA & MALTA Consolider Team,

Universidad de La Laguna, Apdo. Correos 456, E-38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife,

Spain

⁴ Department of Physics, Pukyong National University, Busan 608-737, Republic of Korea

* corresponding author: https://www.intibs.pl;

*KEYWORDS luminescent manometer, pressure sensor, Mn*⁴⁺, average lifetime, luminescence intensity ratio, optical manometry

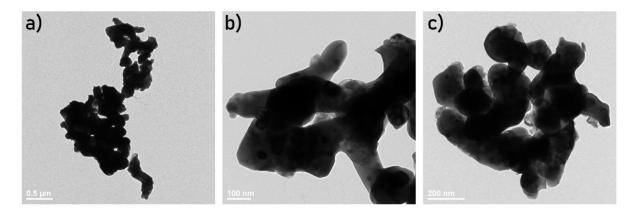
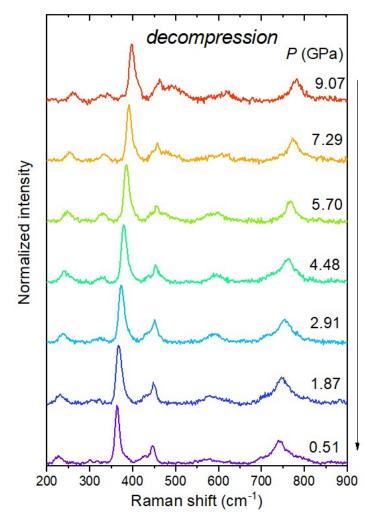
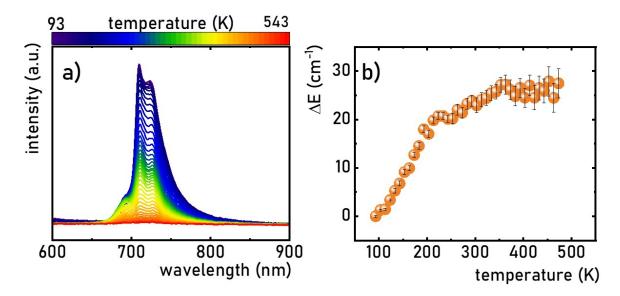
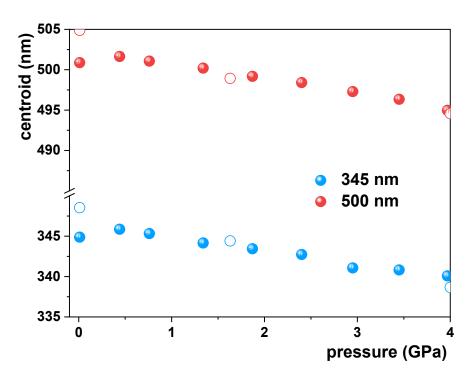


Figure S1. The representative TEM images of SrGdAlO₄: 0.2% Mn⁴⁺

Table S1. Estimated energies (peak centroids) of the main Raman modes at low pressure, and the corresponding pressure shift rates of the corresponding bands for the SrGdAlO₄ material.

Peak centroid at ambient pressure (cm ⁻¹)	Shift rate (cm ⁻¹ /GPa)
---	------------------------------------

≈230	3.58 ± 0.25
≈370	3.71 ± 0.09
≈440	3.69 ± 0.37
≈575	3.67 ± 0.31
\approx 740	4.51 ± 0.17

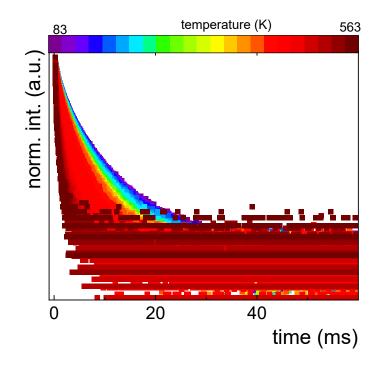

Figure S2. Normalized Raman spectra for the SrGdAlO₄ material measured for different pressure values, during the decompression cycle.

Figure S3. Emission spectra of SrGdAlO₄:0.2%Mn⁴⁺ measured as a function of temperature -a); change of the energy of the emission band maxima as a function of temperature-b).

Figure S4. The change of the excitation band centroid of Mn⁴⁺ ion in SrGdAlO₄:0.2%Mn⁴⁺ as a function of pressure during the compression (full points) and decompression (open points).

Figure S5. The luminescence decay profile of the Mn⁴⁺ ion emission for the SrGdAlO₄:0.2%Mn⁴⁺ measured as a function of temperature.

The crystal field parameter Dq and Racah parameters for Mn⁴⁺ of 3d³ electron configuration were defined based on experimental excitation and emission spectra data. For this purpose, the energies of ${}^{4}A_{2} \rightarrow {}^{4}T_{1}$ and ${}^{4}A_{2} \rightarrow {}^{4}T_{2}$ bands obtained from excitation spectra and zero phonon line (R-line) of ${}^{2}E \rightarrow {}^{4}A_{2}$ band from emission spectra. The empirical equations take the following form:

$$E({}^{4}A_{2} \rightarrow {}^{4}T_{2}) = 10Dq \tag{Eq. S1}$$

$$\frac{Dq}{B} = \frac{15\left(\frac{\Delta E}{Dq} - 8\right)}{\left(\frac{\Delta E}{Dq}\right)^2 - 10 \cdot \frac{\Delta E}{Dq}}$$
(Eq. S2)

$$\frac{E({}^{2}E \rightarrow {}^{4}A_{2})}{B} = \frac{3.05 \cdot C}{B} + 7.90 - \frac{1.80 \cdot B}{Dq}$$
(Eq. S3)

where ΔE was predefined as:

$$\Delta E = E({}^{4}A_{2} \rightarrow {}^{4}T_{1}) - E({}^{4}A_{2} \rightarrow {}^{4}T_{2})$$
(Eq. S4)

The average lifetime of the excited states were calculated with the equation Eq. S5:

$$\tau_{avr} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2}$$
(Eq. S5)

where: τ_1 , τ_2 are the decay parameters and A₁, A₂ are amplitudes of the bi-exponential function:

$$I(t) = I_0 + A_1 \cdot \exp\left(-\frac{t}{\tau_1}\right) + A_2 \cdot \exp^{[t_0]}(-\frac{t}{\tau_2})$$
(Eq. S6)

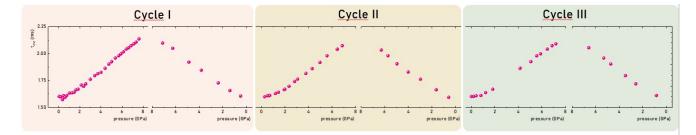
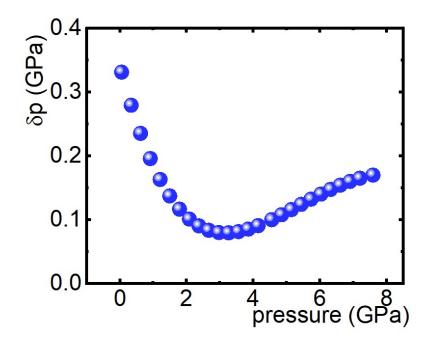



Figure S6. The room temperature τ_{avr} of SrGdAlO₄:0.2%Mn⁴⁺ measured within three compression and decompression cycles

The pressure determination uncertainty of the lifetime-based luminescence manometer was determined as follows:

$$\delta p = \frac{1}{S_{R,P}} \frac{\delta \tau_{avr}}{\tau_{avr}}$$
(Eq. S7)

where $\delta \tau_{avr}/\tau_{avr}$ is the uncertainty in the determination of τ_{avr} (determined as a standard deviation in 30 measurements of τ_{avr}).

Figure S7. The pressure determination uncertainty as a function of applied pressure for the lifetime based luminescent manometer in SrGdAlO₄:0.2%Mn⁴⁺.