1. Supplementary Tables

No.	Janus gels	Preparation	GF	DH	Cycle stability	Ref.
1	PDMA/RSF	One-step in situ photopolymerization	GF = 2.24 (strain); 0.00732 kPa ⁻¹ (pressure)	4.92%	500	This work
2	PVA/PANI; PVA/PA	Freeze-thaw cycle	GF = 3.4 (strain); NA (pressure)	NA	1000	1
3	J-AuNPs@GA	Medium-guided diffusion	GF = 0.3 (strain); NA (pressure)		NA	2
4	SMA/CNFs/PA M;NFs@TA/P AA	Layer-by-layer polymerization	GF = 0.3(strain); NA (pressure)	NA	200	3
5	PAAM/SDS/H MA;PAAM/Aa /Ta	Layer-by-layer polymerization	NA	NA	NA	4
6	PAA/Lignin/Ca 2 ⁺	Impregnation diffusion	GF = 2.51(strain); NA (pressure)	NA	NA	5

Table S1. A comparison of the performance of sensors based on Janus gels

Table S2. Formula of PDMA-RSF ion-conductive gels

				0	
Ion-conductive gel	DMA (g)	[EMIM][Tf ₂ N] (g)	1173 (g)	PEGDA (g)	7.2wt%RSF (g)
PDMA-RSF(0.5wt%)	0.8	1.2	0.008	0.002	0.056
PDMA-RSF(1wt%)	0.8	1.2	0.008	0.002	0.111
PDMA-RSF(2wt%)	0.8	1.2	0.008	0.002	0.222
PDMA-RSF(3wt%)	0.8	1.2	0.008	0.002	0.333
PDMA-RSF(5wt%)	0.8	1.2	0.008	0.002	0.556

No.	Janus gels	Preparation	Stress (kPa)	Strain (%)	Adhension strength (kPa)	Ref.
1	PDMA/RSF	One-step in situ photopolymerization	215.90	2671%	250	This work
2	PVA/PANI; PVA/PA	Freeze-thaw cycle	45.8	345.3%	1.6	1
3	ADSCH	Layer-by-layer polymerization	150	800	30	6

Table S3. Mechanical properties and adhesion strength of the Janus gels

2. Supplementary Figures

Fig. S1. Digital photograph of ionic conductive gel prepared using $[EMIM][Tf_2N]$ and [EMIM]Cl, respectively.

Fig. S2. (a) Tensile testing stress-strain curves, (b) stress at break and strain at break, and (c) toughness of the PDMA-RSF ion-conductive gels with various RSF contents.

Fig. S3. Conductivity of PDMA-RSF ion-conductive gels with different RSF contents.

Fig. S4. Adhesion strength of PDMA-RSF ionic conductive gels to the skin.

Fig. S5. Possible adhesion mechanism of PDMA-RSF ion-conductive gels on different substrate surfaces.

Fig. S6. Bactericidal efficiency of silicon wafers and PDMA-RSF ion-conductive gels.

References

- M. C. Wang, H. W. Zhou, H. T. Du, L. Chen, G. X. Zhao, H. B. Liu, X. L. Jin, W. X. Chen and A. J. Ma, *Chem. Eng. J.*, 2022, 446, 137163.
- X. Zhang, Y. Zhang, W. Zhang, Y. Dai and F. Xia, *Chem. Eng. J.*, 2021, 420, 130447.
- 3 X. Qu, S. Wang, Y. Zhao, H. Huang, Q. Wang, J. Shao, W. Wang and X. Dong, *Chem. Eng. J.*, 2021, 425, 131523.
- 4 Q. Zhang, X. Liu, L. Duan and G. Gao, *Chem. Eng. J.*, 2019, **365**, 10-19.
- 5 C. Fu, J. Lin, Z. Tang, L. Chen, F. Huang, F. Kong, Y. Ni and L. Huang, *Int. J. Biol. Macromol.*, 2022, 201, 104-110.
- L. Bai, Y. Jin, X. Shang, L. Shi, H. Jin, R. Zhou and S. Lai, *Chem. Eng. J.*, 2022, 438, 135596.