Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supporting information

High-performance, fluorescent, UV-shielding, triboelectric, super-

flexible polyurea elastomers via strong π - π stacking of pyrene and

hydrogen bonding strategies

Zheng Yuan^{1,a}, Jun Yan^{1,a}, Feng Gao^a, Jue Cheng^{*, a}, Junying Zhang^{*, a}

 ^a Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education; Beijing University of Chemical Technology, Beijing 100029, China
¹ The two authors made equal contributions to this work.
*Corresponding author. Tel. :+86 10 64425439; fax: +86 10 64425439
E-mail address: <u>chengjue@mail.buct.edu.cn</u> (J. Cheng) zhangjy@mail.buct.edu.cn (J. Zhang)

Figure S1. The synthetic route of PrGE

Figure S2. FTIR of the product PrGE and HPy

gure S3. (a) $^1\mathrm{H}$ NMR of PrGE. (b) $^{13}\mathrm{C}$ NMR of PrGE

Fi

Table S1 Recipe list for PPU-x synthesis

	PrGE/mol	2-Hydroxy-1- ethanethiol/mol	HMDI/mol	D2000/mol	D230/mol
PPU-0.1	0.00125	0.00125	0.01375	0.00625	0.00625
PPU-0.2	0.0025	0.0025	0.015	0.00625	0.00625
PPU-0.3	0.00375	0.00375	0.01625	0.00625	0.00625
PPU-0.4	0.005	0.005	0.0175	0.00625	0.00625

Figure S4. The synthetic route of BPU-x

Figure S5. (a-b) FTIR image of corresponding product during BPU synthesis

	PrGE/mol	2-Hydroxy-1- ethanethiol/mol	HMDI/mol	D2000/mol	D230/mol		
BPU-0.1	0.00125	0.00125	0.01375	0.00625	0.00625		
BPU-0.2	0.0025	0.0025	0.015	0.00625	0.00625		
BPU-0.3	0.00375	0.00375	0.01625	0.00625	0.00625		
BPU-0.4	0.005	0.005	0.0175	0.00625	0.00625		
PU	0	0	0.0125	0.00625	0.00625		

Table S2 Recipe list for BPU-x and PU synthesis

Figure S6. The EDS result of PPU-0.3

Figure S7. Phase diagram of AFM for PPU-0.1 and PPU-0.2

Figure S8. Stress-strain curves of PU before and after self-repair

Figure S9. (a) After 50 hours of UV illumination. (b) After 100 hours of UV illumination

Figure S10. UV-vis absorption spectra of PPU-0.3 and PPU-0.3-G-0.05

Figure S11. The SEM images of cold fracture of PPU-0.3-G-0.05

Figure S12. The short-circuit current of TENG