Design and synthesis of MnCo-MOF modified flexible 3D graphene sponge electrode for an asymmetric supercapacitor with high power and energy density

Elif Erçarıkcı^a, Ezgi Topçu^a and Kader Dağcı Kıranşan*^a

a Department of Chemistry, Science Faculty, Atatürk University, Erzurum, 25240, TURKEY kdagci@atauni.edu.tr

Figure S1. TGA thermogram of MnCo-MOF/3DG.

Figure S2. (a) CV graphs of MnCo-MOF/3DGs prepared using different amounts of MnCo-MOF. CVs of as-prepared MnCo-MOF/3DG (b) in different electrolytes, (c) in negative and (d) positive potential ranges.

Table S1. Specific capacitance values of 3DG and MnCo-MOF/3DG at different current densities and different scan rates.

Cs (F/g)															
	Cs (CV)						Cs (GCD)								
	(different scan rates, mV/s)						(different current densities, A/g)								
Sample	2	5	10	25	50	75	1	2	4	6	8	10	20	30	
3DG	348	285	206	85	62	45	416	333	250	209	105	73	41	20	
MnCo-	401	318	222	156	103	60	408	328	272	216	152	104	60	42	

MOF/3D	6	6	9	3	7	9	6	6	0	0	0	0	0	0
G														

Figure S3. Digital camera photograph of MnCo-MOF/3DG//3DG circuit

Figure S4. CVs of as-prepared MnCo-MOF/3DG//3DG circuit (a) in positive and (d) negative potential ranges.

Figure S5. Nyquist plots of MnCo-MOF/3DG//3DG circuit after 1. and 10000. cycles.

Figure S6. FESEM image of MnCo-MOF/3DG after 10000 cycles.

Table S2. Comparison of capacitance performances of MnCo-MOF/3DG with various 3D electrode materials.

Electrode	Cycle number	Electrolyte	Current	Specific	Capacitance	Energy	Power	Ref
	/Change in		Density	capacitance	of ASC	density	density	
	capacitance		(A/g)	(F/g)	circuit	(Wh/kg)	kW/kg	
	(%)				(F/g)			
PPy/FeCoS-	2500 / 5	3 M KOH	1	3178	94	28.3	0.81	1
rGO/NF								
ZnP-	2000 / 29	1 M KOH	0.6	278.7	171.3	24.26	2.5	2
rGO/NF								
FeNiP@Co	20.000 / 26	2 M KOH	1	2280.6	240.1	87.3	0.408	3
Ni-LDH								
rGO/PPY	1000 / 50	3 M	1.5	350	-	14	0.72	4
		NaClO ₄						
ZnP@LIG	5000 / 32	PVA/KC1	1	1425	-	52	0.12	5
NiP@CoAl-	4000 / 5	2 M KOH	1	2593	260.2	37.18	0.45	6
LDH								
FeP-	5000 / 10	3 M KOH	1	376.5	202.10	63.15	-	7
rGO/NF								
CoS	5000 / 5	3 M KOH	5	310	47	5.3	1.8	8
	10000/20	1 1 1	1	2100	1100	105	5.(9
recop/GS	10000/20	H_2SO_4		2100	1100	185	5.6	2
FeZnP/GS	10000/26	1 M	1	1100	780	98	3.8	9

		H_2SO_4								
FeP/GSM	10 000/15	1 M H ₂ SO ₄	1	1872	745	265	5.5	10		
ZnP/GSM	10000/30	2. M H ₂ SO ₄	1	908	310	62	3.05	10		
ZnCo- MOF/GS	7500/22	3 M KOH	1	695	302	108	5.03	11		
MnCo- MOF/3DG	10000/17	2 M H ₂ SO ₄	1	4086	2383	198.5	5.8	This work		
rGO: reduced graphene oxide, PPY: polypyrrole, NF: Nickel foam, LDH: Layered double hydroxides, LIG: Laser induced graphene foam, PVA: Poly vinyl alcohol gel.GS: Graphene sponge, GSM:Graphene sponge material.										

References

- 1 A. Karimi, I. Kazeminezhad, L. Naderi and S. Shahrokhian, J. Phys. Chem. C, 2020, 124, 4393–4407.
- 2 M. Z. Iqbal, M. M. Faisal, S. R. Ali and A. M. Afzal, *J. Electroanal. Chem.*, , DOI:10.1016/j.jelechem.2020.114299.
- 3 L. Wan, D. Chen, J. Liu, Y. Zhang, J. Chen, M. Xie and C. Du, J. Power Sources, 2020, 465, 228293.
- 4 Y. Zhao, J. Liu, Y. Hu, H. Cheng, C. Hu, C. Jiang, L. Jiang, A. Cao and L. Qu, *Adv. Mater.*, 2013, **25**, 591–595.
- 5 C. Zhang, Z. Peng, C. Huang, B. Zhang, C. Xing, H. Chen, H. Cheng, J. Wang and S. Tang, *Nano Energy*, 2021, **81**, 105609.
- 6 S. Wang, Z. Huang, R. Li, X. Zheng, F. Lu and T. He, *Electrochim. Acta*, 2016, **204**, 160–168.
- A. M. Zardkhoshoui and S. S. H. Davarani, J. Alloys Compd., 2019, 773, 527–536.
- 8 K. Subramani, N. Sudhan, R. Divya and M. Sathish, *RSC Adv.*, 2017, 7, 6648–6659.
- 9 E. Erçarıkcı, E. Topçu and K. D. Kıranşan, J. Alloys Compd., 2022, 930, 167305.
- 10 E. Erçarıkcı, Z. Aksu, E. Topçu and K. Dağcı Kıranşan, Int. J. Energy Res., 2022, 1–18.

11 E. Erçarlkel, K. Dağel Klranşan and E. Topçu, *Energy and Fuels*, 2022, **36**, 1735–1745.