## **Supporting Information**

## Probing the Chirality and Optical Activity of Organic Molecules Through the Anisotropic Photoluminescence of Porous Silicon

Chih-Hsuan Hu<sup>a</sup>, Vincent K. S. Hsiao<sup>\*a</sup>, Chih-Chien Chu<sup>\*b</sup>

<sup>a</sup>Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, Nantou 54561, Taiwan <sup>b</sup>Department of Medical Education and Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung 40201, Taiwan Fig. S1 FA spectra and relative degree of polarization measured using **method I** for PSi containing chiral molecules  $(1 \times 10^{-3} \text{ M in ethanol solution})$ .

Fig. S2 FA spectra and relative degree of polarization measured using **method I** for PSi containing chiral molecules  $(1 \times 10^{-3} \text{ M in ethanol solution})$ .



Fig. S3 FA spectra and relative degree of polarization measured using **method II** for PSi containing chiral molecules  $(1 \times 10^{-3} \text{ M} \text{ in ethanol solution})$ . The black spectrum is the PL from PSi sample containing different chiral molecules before separating from broadband polarization beam splitter, and the blue  $(I_{\parallel})$  and red  $(I_{\perp})$ spectrum are anisotropic PL from the same samples.



Fig. S4 FA spectra and relative degree of polarization measured using **method II** for PSi containing chiral molecules ( $1 \times 10^{-3}$  M in ethanol solution). The black spectrum is the PL from PSi sample containing different chiral molecules before separating from broadband polarization beam splitter, and the blue ( $I_{\parallel}$ ) and red ( $I_{\perp}$ )spectrum are anisotropic PL from the same samples.