Supplementary Information

Optimizing through-space interaction for singlet fission by using macrocyclic structures

Zhangxia Wang, Xuexiao Yang, Haibo Ma^{*} and Xiaoyu Xie^{*}

1. Calculation details

Figure S1. The potential energy surface scan curves of BP1 by scanning the dihedral angle in the range of 0-360° in increments of 5° at the B3LYP/6-31G(d) level.

Figure S2. The illustration of diabatic states in bipentacene system as configuration state functions for singlet fission. S₀S₁/S₁S₀: local singlet excited states, CA/AC: charge transfer states and TT: multiexcitonic states, HOMO/LUMO: highest occupied molecular orbital/lowest unoccupied molecular orbital, A/B: two pentacenes.

Figure S3. The MD models for (a) BPc and (b) BP1 systems with 2000 chloroform molecules.

Table S1. Parameter values for evaluating FCWD for singlet fission of BP1 and BPcs.

	BP1	(TIPS-Pentad	cene)	BPc (Pentacene)			
	$S_1 \to S_0$	$S_0 \to T_1$	$S_1 \to T_1$	$S_1 \to S_0$	$S_0 \to T_1$	$S_1 \to T_1$	
$E_0 ({\rm cm}^{-1})$	15553 ¹	6936 ^{2, 3}	8617	17178^{5}	6936 ^{3, 4}	10243	
$\hbar\omega$ (cm ⁻¹)	1400	1400	1400	1400	1400	1400	
$fwhm (cm^{-1})$	800	800	800	800	800	800	
λ (cm ⁻¹) ^a	589	1273	284	767	1510	250	
S ^a	0.421	0.909	0.203	0.548	1.079	0.179	
FCWD (eV ⁻¹)		2.162			0.980		

^a Calculated from DFT and TDDFT-TDA at B3LYP/6-31G* level.

Figure S4. The absorption/emission spectrum (in red/black) of $S_0 \rightarrow T_1/S_1 \rightarrow T_1$ with spectroscopy parameters derived from those of TIPS pentacene to calculate the FCWD value of BP1.

Figure S5. The absorption/emission spectrum (in red/black) of $S_0 \rightarrow T_1/S_1 \rightarrow T_1$ with spectroscopy parameters derived from those of pentacene to calculate the FCWD value of bipentacene macrocycles.

2. Results of equilibrium structures

Figure S6. Electronic couplings (absolute values) of four equilibrium BP1 structures.

	S_0S_1	S_1S_0	CA	AC	TT	S_0S_1	S_1S_0	CA	AC	TT
			str1					str1-1		
S_0S_1	3019.16	-4.08	41.80	44.79	0.25	3041.22	-6.37	0.03	0.05	0.00
S_1S_0		3019.46	-44.78	-41.80	0.25		3041.59	-0.05	-0.03	0.00
CA			4674.42	1.38	86.49			4777.24	0.00	0.08
AC				4674.82	-86.49				4777.20	-0.08
TT					2439.00					2344.27
			str2					str2-1		
S_0S_1	3020.16	-6.69	-44.07	47.31	-0.33	3042.35	-3.68	-0.01	0.02	0.00
S_1S_0		3020.87	-47.31	44.08	0.32		3042.30	-0.02	0.01	0.00
CA			4661.99	-1.55	91.51			4765.23	0.00	0.03
AC				4661.63	91.72				4765.61	0.03
TT					2439.38					2342.78
			str3					str3-1		
S_0S_1	3020.18	13.61	-42.03	-44.26	-0.24	3042.53	10.34	-0.03	-0.04	0.00
S_1S_0		3020.90	44.22	42.02	-0.24		3043.03	0.04	0.03	0.00
CA			4652.25	1.33	86.26			4753.96	0.00	0.09
AC				4652.62	-86.37				4754.44	-0.09
TT					2434.09					2340.49
			str4					str4-1		
S_0S_1	3019.50	-0.97	-44.10	47.29	0.32	3041.67	1.76	-0.01	0.02	0.00
S_1S_0		3019.68	-47.28	44.10	-0.32		3041.73	-0.02	0.01	0.00
CA			4665.63	-1.53	-91.09			4769.18	0.00	-0.02
AC				4666.10	-91.06				4770.11	-0.02
TT					2439.12					2343.16

 Table S2. Electronic Hamiltonian elements of four equilibrium BP1 structures (unit: meV)

			BPc					BPc-1		
	S_0S_1	S_1S_0	CA	AC	TT	S_0S_1	S_1S_0	CA	AC	TT
S_0S_1	3160.63	142.52	68.25	-82.13	0.00	3212.37	136.18	60.96	-87.01	0.00
S_1S_0		3160.64	82.13	-68.25	0.00		3212.53	87.00	-60.96	0.00
CA			3591.95	1.03	0.02			3658.15	1.28	0.01
AC				3592.03	0.01				3658.15	-0.02
TT					2821.06					2884.67

Table S3. Electronic Hamiltonian elements for equilibrium BPc structure. (unit: meV)

Figure S7. Two low-frequency modes of BPc influent the distance between two pentacene units.

3. Decomposition of electronic coupling

The definitions of five diabatic states are shown in Figure S2. Equations 1-8 provide the explicit expressions of the electronic couplings between these states.

$$\langle S_0 S_1 | \hat{H} | CA \rangle = -F_{h_A h_B} - g_{h_A h_B h_A h_A} - g_{h_A h_B h_B h_B} - g_{h_A h_B l_B l_B} + 2g_{h_A l_B l_B h_B}$$
(1)

$$\langle S_0 S_1 | \hat{H} | AC \rangle = F_{l_B l_A} + 2g_{l_B l_A h_A h_A} + g_{l_B l_A h_B h_B} - g_{l_B h_A h_A l_A} + g_{h_B l_A l_B h_B}$$
(2)

$$\langle S_1 S_0 | H | CA \rangle = F_{l_A l_B} + 2g_{l_A l_B h_B h_B} + g_{l_A l_B h_A h_A} - g_{l_A h_B h_B l_B} + g_{h_A l_B l_A h_A}$$
(3)

$$\langle S_1 S_0 | \hat{H} | AC \rangle = F_{h_B h_A} + g_{h_B h_A h_A h_A} + g_{h_B h_A l_A l_A} + g_{h_B h_A h_B h_B} - 2g_{h_B l_A l_A h_A}$$
(4)

$$\langle S_0 S_1 | \hat{H} | TT \rangle = -\sqrt{3/2} g_{h_A l_B l_B l_A} + \sqrt{3/2} g_{h_A h_B h_B l_A}$$
(5)

$$\langle S_1 S_0 | \hat{H} | TT \rangle = \sqrt{3/2} g_{h_B l_A l_A l_B} - \sqrt{3/2} g_{h_B h_A h_A l_B}$$
(6)

$$\langle \mathrm{CA}|\hat{H}|\mathrm{TT}\rangle = \sqrt{3/2} \left(F_{h_{\mathrm{B}}l_{\mathrm{A}}} + g_{h_{\mathrm{B}}l_{\mathrm{A}}h_{\mathrm{A}}h_{\mathrm{A}}} + g_{h_{\mathrm{B}}l_{\mathrm{A}}h_{\mathrm{B}}h_{\mathrm{B}}} + g_{h_{\mathrm{B}}l_{\mathrm{A}}l_{\mathrm{B}}l_{\mathrm{B}}} - g_{h_{\mathrm{B}}h_{\mathrm{A}}h_{\mathrm{A}}l_{\mathrm{A}}}\right)$$
(7)

$$\langle \mathrm{AC}|\hat{H}|\mathrm{TT}\rangle = \sqrt{3/2} \left(F_{h_{\mathrm{A}}l_{\mathrm{B}}} + g_{h_{\mathrm{A}}l_{\mathrm{B}}h_{\mathrm{A}}h_{\mathrm{A}}} + g_{h_{\mathrm{A}}l_{\mathrm{B}}l_{\mathrm{A}}l_{\mathrm{A}}} + g_{h_{\mathrm{A}}l_{\mathrm{B}}h_{\mathrm{B}}h_{\mathrm{B}}} - g_{h_{\mathrm{A}}h_{\mathrm{B}}h_{\mathrm{B}}l_{\mathrm{B}}}\right) \tag{8}$$

Here, $h_{A/B}$ stands for HOMO of A/B molecule, and $l_{A/B}$ stands for LUMO of A/B molecule. The Fock element (F_{ij}) is given by:

$$F_{ij} = h_{ij} + \sum_{a \in \text{occ}} (2g_{iaja} - g_{iaaj}) = h_{ij} + 2J - K$$
$$h_{ij} = \int \Phi_i^*(\mathbf{x}) \left(-\frac{1}{2} \nabla^2 - \sum_l \frac{Z_l}{r_l} \right) \Phi_j(\mathbf{x}) d\mathbf{x}$$
$$g_{ijkl} = \iint \frac{\Phi_i^*(\mathbf{x}_1) \Phi_k^*(\mathbf{x}_2) \Phi_j(\mathbf{x}_1) \Phi_l(\mathbf{x}_2)}{r_{12}} d\mathbf{x}_1 d\mathbf{x}_2$$

Here, Z_I is the nuclear charge, r_I is the electron-nuclear separation, r_{12} is the electron-electron separation. 2J is the Coulomb term, K is the exchange term, and h_{ij} is one-electron integral. Generally, the couplings can be expressed as $h_{ij} + 2J - K + g$, and the two-electron term (g) is the sum of two-electron integrals of HOMO/LUMO. For example, the two-electron term is $-g_{h_Ah_Bh_Ah_A} - g_{h_Ah_Bh_Bh_B} - g_{h_Ah_Bl_Bl_B} + 2g_{h_Al_Bl_Bh_B}$ for $\langle S_0S_1 | \hat{H} | CA \rangle$.

In order to explore the influence of the linker on the couplings, we localize occupied orbitals for BP1 and BPc to analyze the contribution of the linker to Coulomb and exchange interactions in the Fock operator term.

$$F_{ij} = h_{ij} + \sum_{\substack{a \in \text{linker} \\ = h_{ij} + 2J_{ij}^{l} - K_{ij}^{l} + 2J_{ij}^{c} - K_{ij}^{c}} (2g_{ibjb} - g_{ibbj})$$

Where $2J_{ij}^{l}$ is the Coulomb term of occupied linker orbitals, and $-K_{ij}^{l}$ is the exchange terms of occupied linker orbitals. All the data for four equilibrium structures and 10 molecular dynamics snapshots of BP1 are listed in Table S1-S14, and those of BPc are listed in Table S15-S25.

			F			~	I/
		h	2 <i>J</i> (2 <i>J</i> ¹)	$-K(-K^{l})$	total	g	V
	BP1	-1843.99	1886.04 (1552.21)	-2.42 (-6.75)	44.47	-2.67	41.80
$(S_0S_1 H CA)$	BP1-1	-1.41	1.47 (-)	0.03 (-)	0.02	0.01	0.03
$\langle \mathbf{c} \mathbf{c} \hat{\boldsymbol{u}} \boldsymbol{\lambda} \boldsymbol{c} \rangle$	BP1	1063.60	-1018.62 (-1270.11)	4.98 (5.29)	40.01	4.78	44.79
$(3_0 3_1 \Pi AC)$	BP1-1	-0.93	1.02 (-)	0.05 (-)	0.04	0.01	0.05
$\int c c \left \hat{\eta} \right c \Lambda$	BP1	-1063.60	1018.62(1270.11)	-4.98 (-5.29)	-40.01	-4.78	-44.78
$(S_1S_0 \Pi CR)$	BP1-1	0.93	-1.02 (-)	-0.05 (-)	-0.04	-0.01	-0.05
$\langle c, c, \hat{\eta} \lambda c \rangle$	BP1	1843.99	-1886.04(1552.21)	2.42 (6.75)	-44.47	2.68	-41.80
$(S_1S_0 \Pi AC)$	BP1-1	1.41	-1.47 (-)	-0.03 (-)	-0.04	-0.01	-0.03
/C C \hat{H} TT	BP1	-	-	-	-	0.25	0.25
$(S_0S_1 \Pi 11)$	BP1-1	-	-	-	-	0.00	0.00
$(C, C \hat{U} TT)$	BP1	-	-	-	-	0.25	0.25
(S ₁ S ₀ H 11)	BP1-1	-	-	-	-	0.00	0.00
$(C \Lambda \hat{\mathcal{U}} T T)$	BP1	-412.41	456.30 (204.52)	13.65 (-6.33)	30.23	56.25	86.49
$\langle CA H II \rangle$	BP1-1	-1.40	1.47 (-)	0.06 (-)	0.02	0.07	0.08
$(\Lambda c \hat{\mu} \tau \tau)$	BP1	412.48	-456.35 (204.69)	-13.63 (6.30)	-30.24	-56.25	-86.49
	BP1-1	1.40	-1.47 (-)	-0.06 (-)	-0.02	-0.07	-0.08

Table S4. Decomposition of electronic coupling of BP1 at equilibrium structure (str1). (meV)

Table S5. Energies of five diabatic states of BP1 at equilibrium structure (str1) in eV.

	$E_{S_0S_1}$	$E_{S_1S_0}$	E _{CA}	E _{AC}	E _{TT}
BP1	3.02	3.02	4.67	4.67	2.44
BP1-1	3.04	3.04	4.78	4.78	2.34

			F			~	I/
		h	2J (2J ¹)	$-K(-K^{l})$	total	g	V
	BP1	2018.76	-2062.98 (-1631.43)	1.49 (-13.31)	-45.72	1.64	-44.07
$(S_0S_1 H CA)$	BP1-1	0.50	-0.52 (-)	-0.01 (-)	-0.01	0.00	-0.01
$\langle c, c, \hat{u} \lambda c \rangle$	BP1	1125.51	-1074.62 (-1282.20)	7.31 (-32.66)	43.58	3.73	47.31
$(S_0S_1 H AC)$	BP1-1	-0.36	0.39 (-)	0.02 (-)	0.01	0.00	0.02
	BP1	-1125.51	1074.62 (1282.20)	-7.31 (32.66)	-43.58	-3.73	-47.31
$\langle S_1 S_0 H CA \rangle$	BP1-1	0.36	-0.39 (-)	-0.02 (-)	-0.01	0.00	-0.02
$\langle c, c, \hat{u} \lambda c \rangle$	BP1	-2018.76	2062.98 (1631.43)	-1.49 (13.31)	45.72	-1.64	44.08
$(S_1S_0 H AC)$	BP1-1	-0.50	0.52 (-)	0.01 (-)	0.01	0.00	0.01
	BP1	-	-	-	-	-0.33	-0.33
$(S_0S_1 H 11)$	BP1-1	-	-	-	-	0.00	0.00
	BP1	-	-	-	-	0.32	0.32
$(S_1S_0 H 11)$	BP1-1	-	-	-	-	0.00	0.00
	BP1	-488.56	537.99 (239.59)	17.81 (-11.67)	31.63	59.88	91.51
(CA H TT)	BP1-1	-0.52	0.54 (-)	0.02 (-)	0.01	0.02	0.03
	BP1	-492.50	542.02 (227.67)	17.81 (11.60)	31.71	60.02	91.72
	BP1-1	-0.55	0.57 (-)	0.02 (-)	0.01	0.02	0.03

Table S6. Decomposition of electronic coupling of BP1 at equilibrium structure (str2). (meV)

Table S7. Energies of five diabatic states of BP1 at equilibrium structure (str2). (eV)

	$E_{S_0S_1}$	$E_{S_1S_0}$	E _{CA}	E _{AC}	E _{TT}
BP1	3.02	3.02	4.66	4.66	2.44
BP1-1	3.04	3.04	4.77	4.77	2.34

			F			~	I/
		h	2 <i>J</i> (2 <i>J</i> ¹)	$-K(-K^{l})$	total	g	V
	BP1	1934.99	-1975.38 (-1423.47)	2.97 (4.43)	-43.36	1.33	-42.03
$(S_0S_1 \Pi CA)$	BP1-1	1.57	-1.63 (-)	-0.03 (-)	-0.02	-0.01	-0.03
$\langle \mathbf{c} \mathbf{c} \hat{\boldsymbol{u}} \boldsymbol{\lambda} \boldsymbol{c} \rangle$	BP1	-1172.68	1128.14 (1138.15)	-3.73 (-4.91)	-40.81	-3.45	-44.26
$(3_0 3_1 H AC)$	BP1-1	0.62	-0.70 (-)	-0.05 (-)	-0.04	-0.01	-0.04
/CC DCA	BP1	1172.68	-1128.14 (-1138.15)	3.73 (4.91)	40.81	3.42	44.22
$(3_13_0 \Pi CA)$	BP1-1	-0.62	0.70 (-)	0.05 (-)	0.04	0.01	0.04
$\langle c, c, \hat{\eta} \lambda c \rangle$	BP1	-1934.99	1975.38 (1423.47)	-2.97 (-4.43)	43.36	-1.34	42.02
$(S_1S_0 \Pi AC)$	BP1-1	-1.57	1.63 (-)	0.03 (-)	0.02	0.01	0.03
$\langle \mathbf{c} \mathbf{c} \hat{\boldsymbol{\eta}} \mathbf{T} \mathbf{T} \rangle$	BP1	-	-	-	-	-0.24	-0.24
$(S_0S_1 \Pi 11)$	BP1-1	-	-	-	-	0.00	0.00
/C C \hat{H} TT	BP1	-	-	-	-	-0.24	-0.24
(S ₁ S ₀ 1])	BP1-1	-	-	-	-	0.00	0.00
$/C \wedge \hat{\eta} $ TT	BP1	-436.06	480.60 (199.46)	14.89 (-6.67)	29.65	56.61	86.26
(CA H II)	BP1-1	-1.49	1.57 (-)	0.06 (-)	0.02	0.07	0.09
$/\Lambda c \hat{\eta} \tau \tau$	BP1	437.39	-481.98 (-176.79)	-14.88 (7.01)	-29.71	-56.67	-86.37
	BP1-1	1.49	-1.57 (-)	-0.06 (-)	-0.02	-0.07	-0.09

Table S8. Decomposition of electronic coupling of BP1 at equilibrium structure (str3). (meV)

Table S9. Energies of five diabatic states of BP1 at equilibrium structure (str3). (eV)

	$E_{S_0S_1}$	$E_{S_1S_0}$	E _{CA}	E _{AC}	E _{TT}
BP1	3.02	3.02	4.66	4.66	2.44
BP1-1	3.04	3.04	4.77	4.77	2.34

			F			~	I/
		h	2J (2J ¹)	$-K(-K^{l})$	total	g	V
$\int c c \left \hat{u} \right c \Lambda$	BP1	1982.80	-2027.55 (-1556.52)	1.45 (4.30)	-46.20	2.10	-44.10
$(S_0S_1 H CA)$	BP1-1	0.51	-0.53 (-)	-0.01 (-)	-0.01	0.00	-0.01
$\langle c, c, \hat{\eta} \lambda c \rangle$	BP1	1111.69	-1060.84 (-1240.82)	7.66 (0.04)	43.19	4.10	47.29
$(3_0 3_1 \Pi AC)$	BP1-1	-0.39	0.42 (-)	0.02 (-)	0.01	0.01	0.02
$\int c c \left \hat{\eta} \right c \Lambda$	BP1	-1111.69	1060.84 (1240.82)	-7.66 (-0.04)	-43.19	-4.09	-47.28
$(S_1S_0 \Pi CA)$	BP1-1	0.39	-0.42 (-)	-0.02 (-)	-0.01	-0.01	-0.02
$\langle c, c, \hat{\eta} \lambda c \rangle$	BP1	-1982.80	2027.55 (1556.52)	-1.45 (-4.30)	46.20	-2.10	44.10
$(S_1S_0 \Pi AC)$	BP1-1	-0.51	0.53 (-)	0.01 (-)	0.01	0.00	0.01
/C C \hat{H} TT	BP1	-	-	-	-	0.32	0.32
$(S_0S_1 \Pi 11)$	BP1-1	-	-	-	-	0.00	0.00
/C C \hat{H} TT	BP1	-	-	-	-	-0.32	-0.32
(3 ₁ 3 ₀ <i>Π</i> 11)	BP1-1	-	-	-	-	0.00	0.00
$\int C \Lambda \hat{\eta} \tau \tau$	BP1	494.67	-543.76 (-226.84)	-17.53 (8.18)	-31.56	-59.53	-91.09
(CA H II)	BP1-1	0.44	-0.46 (-)	-0.02 (-)	0.00	-0.02	-0.02
$(\Lambda c \hat{\mu} \tau \tau)$	BP1	494.33	-543.41 (-231.32)	-17.51 (8.17)	-31.56	-59.50	-91.06
	BP1-1	0.44	-0.47 (-)	-0.02 (-)	0.00	-0.02	-0.02

 Table S10. Decomposition of electronic coupling of BP1 at equilibrium structure (str4). (meV)

Table S11. Energies of five diabatic states of BP1 at equilibrium structure (str4). (eV)

	$E_{S_0S_1}$	$E_{S_1S_0}$	E _{CA}	E _{AC}	E _{TT}
BP1	3.02	3.02	4.67	4.67	2.44
BP1-1	3.04	3.04	4.77	4.77	2.34

			F			~	I/
		h	2 <i>J</i> (2 <i>J</i> ¹)	$-K(-K^{l})$	total	- <i>g</i>	V
$\int c c \left \hat{u} \right c \Lambda$	BPc	-1832.99	1659.84 (871.80)	73.07 (25.68)	-100.08	31.83	-68.25
$(S_0S_1 H CA)$	BPc-1	-452.83	295.74 (-)	65.88 (-)	-91.21	30.25	-60.96
$\langle c, c, \hat{\eta} \lambda c \rangle$	BPc	-635.47	512.03 (348.00)	40.87 (-0.31)	-82.57	0.44	-82.13
$(S_0S_1 \Pi AC)$	BPc-1	6.87	-131.64 (-)	43.66 (-)	-81.11	-5.90	-87.01
$\int c c \left \hat{\eta} \right c \Lambda$	BPc	-635.47	512.03 (348.00)	40.87 (-0.31)	-82.57	0.44	-82.13
$(S_1S_0 \Pi CR)$	BPc-1	6.87	-131.64 (-)	43.66 (-)	-81.11	-5.90	-87.00
$\langle c, c, \hat{\eta} \lambda c \rangle$	BPc	1832.99	-1659.84 (-871.80)	-73.07 (-25.68)	100.08	-31.83	68.25
$(S_1S_0 \Pi AC)$	BPc-1	452.83	-295.74 (-)	-65.88 (-)	91.21	-30.25	60.96
$\langle \mathbf{c} \hat{\boldsymbol{\mu}} \mathbf{T} \rangle$	BPc	-	-	-	-	0.00	0.00
(S ₀ S ₁ 1)	BPc-1	-	-	-	-	0.00	0.00
/C C \hat{H} TT	BPc	-	-	-	-	0.00	0.00
(S ₁ S ₀ 1])	BPc-1	-	-	-	-	0.00	0.00
$\int C \Lambda \left \widehat{\Omega} \right T T$	BPc	0.63	-0.60 (-0.22)	-0.02 (-0.01)	0.01	0.01	0.02
(CA <i>H</i> TT)	BPc-1	0.29	-0.26 (-)	-0.02 (-)	0.01	0.00	0.01
$/\Lambda c \hat{\eta} \tau \tau$	BPc	0.99	-0.98 (-0.29)	0.00 (-0.01)	0.01	-0.02	-0.01
	BPc-1	0.22	-0.18 (-)	-0.03 (-)	0.01	0.01	0.02

Table S12. Decomposition of electronic coupling of BPc at equilibrium structure. (meV)

Table S13. Energies of five diabatic states of BPc at equilibrium structure. (eV)

	$E_{S_0S_1}$	$E_{S_1S_0}$	E _{CA}	E _{AC}	E _{TT}
BPc	3.16	3.16	3.59	3.59	2.82
BPc-1	3.21	3.21	3.66	3.66	2.88

			F			~	I/
		h	2J (2J ¹)	$-K(-K^{l})$	total	- <i>g</i>	V
$\int c c \left \hat{u} \right c \Lambda$	BPc	-1146.91	1264.58 (515.29)	-50.78 (-11.04)	66.89	7.24	74.12
$(S_0S_1 H CA)$	BPc-1	-1162.40	1285.76 (-)	-53.85 (-)	69.51	13.87	83.38
	BPc	-212.40	339.63 (368.60)	-53.47 (-15.88)	73.76	12.86	86.62
$(3_03_1 \Pi AC)$	BPc-1	95.05	39.53 (-)	-53.25 (-)	81.33	9.22	90.55
IC C DICAN	BPc	-212.40	339.63 (368.60)	-53.47 (-15.88)	73.76	3.28	77.04
$(S_1S_0 \Pi CA)$	BPc-1	95.05	39.53 (-)	-53.25 (-)	81.33	-1.35	79.98
	BPc	1146.91	-1264.58 (-515.29)	50.78 (11.04)	-66.89	-5.82	-72.70
$(3_1 3_0 \Pi AC)$	BPc-1	1162.40	-1285.76 (-)	53.85 (-)	-69.51	-12.74	-82.25
/C C $\hat{\Pi}$ TT	BPc	-	-	-	-	-0.25	-0.25
(S ₀ S ₁ 1)	BPc-1	-	-	-	-	-0.28	-0.28
/C C $\hat{\Pi}$ TT	BPc	-	-	-	-	-0.09	-0.09
(S ₁ S ₀ 1]	BPc-1	-	-	-	-	-0.12	-0.12
	BPc	-722.57	711.74 (420.01)	6.52 (-2.01)	-4.31	9.64	5.34
$(CA \Pi II)$	BPc-1	-320.31	310.10 (-)	6.53 (-)	-3.68	9.91	6.22
$/\Lambda c \hat{\eta} TT$	BPc	882.05	-871.66 (-537.00)	-3.25 (1.19)	7.14	-4.98	2.15
	BPc-1	451.62	-440.59 (-)	-3.10 (-)	7.93	-5.96	1.97

Table S14. Decomposition of electronic coupling of BPc at 0.5 ns in MD simulation. (meV)

Table S15. Energies of five diabatic states of BPc at 0.5 ns in MD simulation. (eV)

	$E_{S_0S_1}$	$E_{S_1S_0}$	E _{CA}	E _{AC}	E _{TT}
BPc	2.72	2.91	3.06	3.23	1.57
BPc-1	2.78	2.98	3.13	3.28	1.64

			F			~	1/
		h	2J (2J ¹)	$-K(-K^{l})$	total	g	V
	BPc	-947.68	1137.62 (219.52)	-70.09 (-1.45)	119.85	-2.76	117.09
$(S_0S_1 H CA)$	BPc-1	-1075.03	1279.86 (-)	-77.57 (-)	127.26	4.04	131.30
	BPc	1490.20	-1341.48 (-528.23)	-57.82 (-21.35)	90.9	-7.46	83.44
$(3_0 3_1 \Pi AC)$	BPc-1	950.67	-785.94 (-)	-58.23 (-)	106.5	-14.38	92.12
/C C DCA	BPc	1490.20	-1341.48 (-528.23)	-57.82 (-21.35)	90.9	-9.23	81.67
$(S_1S_0 \Pi CR)$	BPc-1	950.67	-785.94 (-)	-58.23 (-)	106.5	-15.31	91.19
	BPc	947.68	-1137.62 (-219.52)	70.09 (1.45)	-119.85	-5.80	-125.65
$(S_1S_0 \Pi AC)$	BPc-1	1075.03	-1279.86 (-)	77.57 (-)	-127.26	-13.88	-141.14
/C C $\hat{\Pi}$ TT	BPc	-	-	-	-	-0.30	-0.30
(S ₀ S ₁ 1)	BPc-1	-	-	-	-	-0.21	-0.21
/C C $\hat{\Pi}$ TT	BPc	-	-	-	-	0.53	0.53
(S ₁ S ₀ 1]	BPc-1	-	-	-	-	0.51	0.51
	BPc	1234.42	-1257.02 (-562.69)	19.98 (-0.17)	-2.62	-48.62	-51.24
(CA H II)	BPc-1	670.90	-699.73 (-)	23.40 (-)	-5.43	-54.18	-59.61
$/\Lambda c \hat{u} \tau \tau$	BPc	132.25	-118.89 (-379.27)	-13.79 (5.32)	-0.43	10.02	9.59
	BPc-1	-243.17	265.76 (-)	-20.08 (-)	2.51	14.29	16.80

Table S16. Decomposition of electronic coupling of BPc at 1.0 ns in MD simulation. (meV)

Table S17. Energies of five diabatic states of BPc at 1.0 ns in MD simulation. (eV)

	$E_{S_0S_1}$	$E_{S_1S_0}$	E _{CA}	E _{AC}	E _{TT}
BPc	2.74	2.70	2.83	2.97	1.43
BPc-1	2.81	2.78	2.91	3.03	1.52

			F			~	I/
		h	2J (2J ¹)	$-K(-K^{l})$	total	- <i>g</i>	V
$\int c c \left \hat{u} \right c \Lambda$	BPc	1434.71	-1375.42 (-1339.64)	-15.64 (3.05)	43.65	-21.77	21.88
$(S_0S_1 H CA)$	BPc-1	168.78	-111.46 (-)	-17.36 (-)	39.96	-20.58	19.37
$\langle \mathbf{c} \mathbf{c} \hat{\boldsymbol{u}} \boldsymbol{\lambda} \boldsymbol{c} \rangle$	BPc	-373.19	271.67 (68.14)	33.66 (2.54)	-67.86	19.99	-47.88
$(3_03_1 \Pi AC)$	BPc-1	-253.35	147.11 (-)	33.76 (-)	-72.48	22.42	-50.06
/C C DCA	BPc	-373.19	271.67 (68.14)	33.66 (2.54)	-67.86	-8.89	-76.76
$(S_1S_0 \Pi CA)$	BPc-1	-253.35	147.11 (-)	33.76 (-)	-72.48	-10.39	-82.87
$\langle c, c, \hat{\eta} \lambda c \rangle$	BPc	-1434.71	1375.42 (1339.64)	15.64 (-3.05)	-43.65	4.80	-38.85
$(S_1S_0 \Pi AC)$	BPc-1	-168.78	111.46 (-)	17.36 (-)	-39.96	5.79	-34.16
$\langle \mathbf{c} \hat{\boldsymbol{\mu}} \mathbf{T} \rangle$	BPc	-	-	-	-	0.69	0.69
$(S_0S_1 \Pi 11)$	BPc-1	-	-	-	-	0.81	0.81
/C C \hat{H} TT	BPc	-	-	-	-	-0.27	-0.27
(S ₁ S ₀ <i>H</i> 11)	BPc-1	-	-	-	-	-0.32	-0.32
$(C \Lambda \hat{u} TT)$	BPc	-533.98	535.21 (338.45)	-9.13 (0.40)	-7.9	-2.60	-10.50
(CA H II)	BPc-1	-109.51	109.38 (-)	-6.43 (-)	-6.56	-2.13	-8.69
$(\Lambda c \hat{u} TT)$	BPc	22.13	-31.78 (-77.36)	6.37 (-1.66)	-3.28	-2.76	-6.04
	BPc-1	-69.08	57.79 (-)	7.07 (-)	-4.22	-3.80	-8.03

Table S18. Decomposition of electronic coupling of BPc at 1.5 ns in MD simulation. (meV)

Table S19. Energies of five diabatic states of BPc at 1.5 ns in MD simulation. (eV)

	$E_{S_0S_1}$	$E_{S_1S_0}$	E _{CA}	E _{AC}	E _{TT}
BPc	2.72	2.98	3.42	3.38	1.75
BPc-1	2.80	3.06	3.64	3.33	1.83

			F			~	I/
		h	2 <i>J</i> (2 <i>J</i> ¹)	$-K(-K^{l})$	total	- <i>g</i>	V
$\int c c \left \hat{u} \right c \Lambda$	BPc	-1142.64	1014.71 (1154.91)	34.95 (2.43)	-92.98	29.12	-63.86
$\langle S_0 S_1 H CA \rangle$	BPc-1	26.23	-141.68 (-)	30.46 (-)	-84.99	25.14	-59.85
$\langle \mathbf{c} \mathbf{c} \hat{\boldsymbol{u}} \boldsymbol{\lambda} \boldsymbol{c} \rangle$	BPc	-860.55	957.35 (601.56)	-34.86 (-3.40)	61.94	-0.72	61.22
$(3_03_1 \Pi AC)$	BPc-1	-343.94	444.29 (-)	-34.84 (-)	65.51	-0.63	64.88
/C C DCA	BPc	-860.55	957.35 (601.56)	-34.86 (-3.40)	61.94	25.85	87.78
$(S_1S_0 \Pi CA)$	BPc-1	-343.94	444.29 (-)	-34.84 (-)	65.51	32.21	97.71
$\langle c, c, \hat{\eta} \lambda c \rangle$	BPc	1142.64	-1014.71 (-1154.91)	-34.95 (-2.43)	92.98	-13.12	79.85
$(S_1S_0 \Pi AC)$	BPc-1	-26.23	141.68 (-)	-30.46 (-)	84.99	-14.30	70.69
$\langle \mathbf{c} \hat{\boldsymbol{\mu}} \mathbf{T} \rangle$	BPc	-	-	-	-	-0.08	-0.08
$(S_0S_1 \Pi 11)$	BPc-1	-	-	-	-	-0.08	-0.08
/C C \hat{H} TT	BPc	-	-	-	-	-0.31	-0.31
(S ₁ S ₀ <i>H</i> 11)	BPc-1	-	-	-	-	-0.31	-0.31
$(C \wedge \widehat{U} T T)$	BPc	241.92	-243.50 (-308.75)	4.36 (8.61)	2.78	0.01	2.78
$(CA \Pi \Pi)$	BPc-1	79.65	-64.93 (-)	-6.23 (-)	8.49	3.55	12.05
$/\Lambda c \hat{u} TT$	BPc	-655.07	615.67 (797.16)	16.62 (-7.39)	-22.78	-22.53	-45.29
	BPc-1	80.18	-128.58 (-)	24.75 (-)	-23.65	-29.80	-53.45

Table 20. Decomposition of electronic coupling of BPc at 2.0 ns in MD simulation. (meV)

Table S21. Energies of five diabatic states of BPc at 2.0 ns in MD simulation. (eV)

	$E_{S_0S_1}$	$E_{S_1S_0}$	E _{CA}	E _{AC}	E _{TT}
BPc	2.77	2.71	3.21	3.10	1.50
BPc-1	2.84	2.80	3.34	3.13	1.58

			F			~	I/
		h	2J (2J ¹)	$-K(-K^{l})$	total	y y	V
$\int c c \left \hat{u} \right c \Lambda$	BPc	-349.11	371.55 (38.95)	-10.18 (2.19)	12.26	3.23	15.49
$\langle S_0 S_1 H CA \rangle$	BPc-1	-286.14	308.29 (-)	-9.97 (-)	12.18	3.36	15.53
$\langle \mathbf{c} \mathbf{c} \hat{\boldsymbol{u}} \boldsymbol{\lambda} \boldsymbol{c} \rangle$	BPc	-428.74	383.03 (153.49)	18.60 (5.75)	-27.11	11.08	-16.03
$(3_0 3_1 H AC)$	BPc-1	-120.06	73.78 (-)	18.58 (-)	-27.7	9.43	-18.27
IS S DICAN	BPc	-428.74	383.03 (153.49)	18.60 (5.75)	-27.11	6.62	-20.50
$(3_13_0 \Pi CR)$	BPc-1	-120.06	73.78 (-)	18.58 (-)	-27.7	5.19	-22.51
$\langle c, c, \hat{u} \lambda c \rangle$	BPc	349.11	-371.55 (-38.95)	10.18 (-2.19)	-12.26	0.76	-11.50
$(3_13_0 \Pi AC)$	BPc-1	286.14	-308.29 (-)	9.97 (-)	-12.18	-0.09	-12.27
/C C \hat{U} TT)	BPc	-	-	-	-	-0.18	-0.18
(3 ₀ 3 ₁ <i>H</i> 11)	BPc-1	-	-	-	-	-0.19	-0.19
/C C \hat{U} TT)	BPc	-	-	-	-	-0.49	-0.49
(3 ₁ 3 ₀ <i>H</i> 11)	BPc-1	-	-	-	-	-0.52	-0.52
$/C \wedge \widehat{\mathcal{D}} TT$	BPc	755.87	-780.40 (-373.70)	18.32 (5.80)	-6.21	-40.83	-47.04
$(CA \Pi \Pi)$	BPc-1	545.95	-571.15 (-)	19.17 (-)	-6.03	-44.27	-50.30
$/\Lambda c \hat{u} \tau \tau$	BPc	607.79	-581.54 (-510.34)	-11.58 (1.87)	14.67	12.39	27.05
	BPc-1	192.04	-165.71 (-)	-11.27 (-)	15.06	11.81	26.87

Table S22. Decomposition of electronic coupling of BPc at 2.5 ns in MD simulation. (meV)

Table S23. Energies of five diabatic states of BPc at 2.5 ns in MD simulation. (eV)

	$E_{S_0S_1}$	$E_{S_1S_0}$	E _{CA}	E _{AC}	E _{TT}
BPc	2.76	2.81	3.60	3.54	1.70
BPc-1	2.86	2.89	3.57	3.77	1.81

			F			~	I/
		h	2J (2J ¹)	$-K(-K^{l})$	total	g	V
	BPc	1218.31	-1301.44 (259.90)	13.22 (-14.66)	-69.91	2.53	-67.39
$(S_0S_1 H CA)$	BPc-1	1325.20	-1405.40 (-)	13.26 (-)	-66.94	-1.00	-67.93
$\langle c, c, \hat{\eta} \lambda c \rangle$	BPc	-965.47	1010.87 (738.37)	-9.62 (-2.49)	35.78	-3.25	32.52
$(3_03_1 \Pi AC)$	BPc-1	-250.86	305.05 (-)	-12.91 (-)	41.28	-6.36	34.91
/S S DCA	BPc	-965.47	1010.87 (738.37)	-9.62 (-2.49)	35.78	23.46	59.24
$(S_1S_0 \Pi CA)$	BPc-1	-250.86	305.05 (-)	-12.91 (-)	41.28	24.67	65.94
$\langle c, c, \hat{\eta} \lambda c \rangle$	BPc	-1218.31	1301.44 (-259.90)	-13.22 (14.66)	69.91	24.08	94.00
$(S_1S_0 \Pi AC)$	BPc-1	-1325.20	1405.40 (-)	-13.26 (-)	66.94	24.63	91.56
/C C \hat{H} TT	BPc	-	-	-	-	0.64	0.64
$(S_0S_1 \Pi 11)$	BPc-1	-	-	-	-	0.69	0.69
$\langle \mathbf{c} \mathbf{c} \hat{\boldsymbol{\eta}} \mathbf{T} \mathbf{T} \rangle$	BPc	-	-	-	-	-0.78	-0.78
(3 ₁ 3 ₀ <i>H</i> 11)	BPc-1	-	-	-	-	-0.78	-0.78
$(C \Lambda \hat{\mathcal{U}} TT)$	BPc	59.73	-65.01 (-58.46)	-2.60 (-2.15)	-7.88	-5.40	-13.28
$(CA \Pi II)$	BPc-1	-65.41	52.41 (-)	0.98 (-)	-12.02	-9.13	-21.14
$(\Lambda c \hat{\mu} \pi \pi)$	BPc	962.90	-968.14 (-493.16)	5.64 (5.64)	0.4	-28.43	-28.03
	BPc-1	588.51	-585.45 (-)	0.98 (-)	4.04	-25.32	-21.28

Table S24. Decomposition of electronic coupling of BPc at 3.0 ns in MD simulation. (meV)

Table S25. Energies of five diabatic states of BPc at 3.0 ns in MD simulation. (eV)

	$E_{S_0S_1}$	$E_{S_1S_0}$	E _{CA}	E _{AC}	E _{TT}
BPc	2.78	2.80	3.37	3.34	1.53
BPc-1	2.86	2.86	3.53	3.32	1.61

			F			~	I/
		h	2J (2J ¹)	$-K(-K^{l})$	total	- <i>g</i>	V
$\int c c \left \hat{u} \right c \Lambda$	BPc	-637.68	711.38 (-161.38)	-23.86 (1.21)	49.84	-1.95	47.89
$(S_0S_1 H CA)$	BPc-1	-829.14	901.20 (-)	-23.03 (-)	49.03	0.30	49.32
	BPc	625.82	-565.79 (-77.08)	-22.64 (-10.46)	37.39	-13.65	23.73
$(3_0 3_1 \Pi AC)$	BPc-1	405.86	-350.05 (-)	-18.94 (-)	36.87	-13.04	23.82
$\int c c \left \hat{\eta} \right c \Lambda$	BPc	625.82	-565.79 (-77.08)	-22.64 (-10.46)	37.39	-19.54	17.84
$\langle S_1 S_0 H CA \rangle$	BPc-1	405.86	-350.05 (-)	-18.94 (-)	36.87	-20.68	16.19
$\langle c, c, \hat{U} A c \rangle$	BPc	637.68	-711.38 (161.38)	23.86 (-1.21)	-49.84	-15.36	-65.20
$(S_1S_0 H AC)$	BPc-1	829.14	-901.20 (-)	23.03 (-)	-49.03	-15.42	-64.45
$(C, C \hat{U} TT)$	BPc	-	-	-	-	-1.33	-1.33
$(S_0S_1 H 11)$	BPc-1	-	-	-	-	-1.32	-1.32
$(\mathbf{C} \in \widehat{U} _{TTT})$	BPc	-	-	-	-	0.30	0.30
$(S_1S_0 H 11)$	BPc-1	-	-	-	-	0.27	0.27
$(C \Lambda \hat{\mathcal{U}} TT)$	BPc	44.56	-67.45 (-141.51)	12.96 (3.72)	-9.93	-11.33	-21.26
(CA H II)	BPc-1	60.37	-83.89 (-)	14.09 (-)	-9.43	-16.28	-25.70
$(\Lambda C \hat{u} TT)$	BPc	33.32	-82.45 (472.02)	34.68 (-0.60)	-14.45	-48.54	-62.99
	BPc-1	437.85	-487.32 (-)	34.35 (-)	-15.12	-47.84	-62.96

 Table S26. Decomposition of electronic coupling of BPc at 3.5 ns in MD simulation. (meV)

Table S27. Energies of five diabatic states of BPc at 3.5 ns in MD simulation. (eV)

	$E_{S_0S_1}$	$E_{S_1S_0}$	E _{CA}	E _{AC}	E _{TT}
BPc	2.89	2.99	3.48	3.47	2.05
BPc-1	2.96	3.05	3.60	3.49	2.13

			F			~	I/
		h	2J (2J ¹)	$-K(-K^{l})$	total	g	V
$\int c c \left \hat{u} \right c \Lambda$	BPc	-2622.36	2670.31 (893.43)	-11.24 (0.71)	36.70	34.98	71.68
$(S_0S_1 H CA)$	BPc-1	-1992.33	2042.37 (-)	-13.00 (-)	37.05	41.15	78.20
$\langle S_0 S_1 \hat{H} AC \rangle$	BPc	-720.17	540.63 (18.21)	64.29 (15.83)	-115.25	20.93	-94.32
	BPc-1	-544.92	359.21 (-)	63.88 (-)	-121.83	22.85	-98.98
$\langle S_1 S_0 \hat{H} CA \rangle$	BPc	-720.17	540.63 (18.21)	64.29 (15.83)	-115.25	31.67	-83.58
	BPc-1	-544.92	359.21 (-)	63.88 (-)	-121.83	33.89	-87.94
$\left c c \right \widehat{u} A c \right $	BPc	2622.36	-2670.31 (-893.43)	11.24 (-0.71)	-36.70	-25.49	-62.19
$(S_1S_0 \Pi AC)$	BPc-1	1992.33	-2042.37 (-)	13.00 (-)	-37.05	-30.83	-67.87
$(\mathbf{c} \mathbf{c} \hat{\boldsymbol{\eta}} \mathbf{T} \mathbf{T})$	BPc	-	-	-	-	-0.34	-0.34
(S ₀ S ₁ 1)	BPc-1	-	-	-	-	-0.33	-0.33
$(\mathbf{c} \mathbf{c} \hat{\boldsymbol{\eta}} \mathbf{T} \mathbf{T})$	BPc	-	-	-	-	-0.38	-0.38
(S ₁ S ₀ 1]	BPc-1	-	-	-	-	-0.45	-0.45
	BPc	2018.94	-1984.75 (-1061.38)	-17.70 (2.02)	16.49	-17.59	-1.11
$(CA \Pi II)$	BPc-1	961.31	-920.77 (-)	-23.21 (-)	17.33	-12.80	4.53
$/\Lambda c \hat{u} \tau \tau$	BPc	1005.52	-970.00 (-405.05)	-11.41 (-3.97)	24.11	6.36	30.46
	BPc-1	558.00	-516.36 (-)	-15.52 (-)	26.12	10.80	36.92

Table S28. Decomposition of electronic coupling of BPc at 4.0 ns in MD simulation. (meV)

Table S29. Energies of five diabatic states of BPc at 4.0 ns in MD simulation. (eV)

	$E_{S_0S_1}$	$E_{S_1S_0}$	E _{CA}	E _{AC}	E _{TT}
BPc	2.67	2.89	3.26	3.34	1.61
BPc-1	2.74	2.94	3.28	3.45	1.68

			F			~	1/
		h	2J (2J ¹)	$-K(-K^{l})$	total	- <i>g</i>	V
$\int c c \left \hat{u} \right c \Lambda$	BPc	846.92	-1043.01 (17.98)	71.58 (-11.52)	-124.52	1.57	-122.95
$(S_0S_1 H CA)$	BPc-1	1196.77	-1409.64 (-)	80.44 (-)	-132.43	-7.82	-140.25
$\langle S_0 S_1 \hat{H} AC \rangle$	BPc	928.84	-731.66 (-190.06)	-80.32 (-25.95)	116.86	-18.12	98.74
	BPc-1	462.43	-250.80 (-)	-80.74 (-)	130.90	-22.43	108.47
$\langle S_1 S_0 \hat{H} CA \rangle$	BPc	928.84	-731.66 (-190.06)	-80.32 (-25.95)	116.86	-5.58	111.28
	BPc-1	462.43	-250.80 (-)	-80.74 (-)	130.90	-10.02	120.87
$\langle c, c, \hat{u} \lambda c \rangle$	BPc	-846.92	1043.01 (-17.98)	-71.58 (11.52)	124.52	4.57	129.09
$(S_1S_0 \Pi AC)$	BPc-1	-1196.77	1409.64 (-)	-80.44 (-)	132.43	13.07	145.50
/C C \hat{H} TT	BPc	-	-	-	-	0.59	0.59
(S ₀ S ₁ 1)	BPc-1	-	-	-	-	0.58	0.58
/C C \hat{H} TT	BPc	-	-	-	-	0.03	0.03
(S ₁ S ₀ <i>H</i> 11)	BPc-1	-	-	-	-	0.05	0.05
$(C \Lambda \hat{u} TT)$	BPc	-340.00	335.05 (232.34)	-2.34 (-1.43)	-7.29	0.89	-6.40
	BPc-1	-132.45	130.67 (-)	-5.07 (-)	-6.85	0.62	-6.23
$/\Lambda c \hat{u} \tau \tau$	BPc	-391.41	378.10 (178.18)	4.19 (-2.25)	-9.12	1.08	-8.04
	BPc-1	-344.56	329.00 (-)	4.16 (-)	-11.4	0.79	-10.61

Table S30. Decomposition of electronic coupling of BPc at 4.5 ns in MD simulation. (meV)

Table S31. Energies of five diabatic states of BPc at 4.5 ns in MD simulation. (eV)

	$E_{S_0S_1}$	$E_{S_1S_0}$	E _{CA}	E _{AC}	E _{TT}
BPc	2.88	3.00	3.18	3.18	2.08
BPc-1	2.94	3.07	3.22	3.27	2.14

			F			~	I/
		h	2J (2J ¹)	$-K(-K^{l})$	total	<u> </u>	V
$\int c c \left \hat{u} \right c \Lambda$	BPc	849.94	-958.31 (29.47)	42.13 (-9.61)	-66.27	-6.63	-72.86
$(S_0S_1 H CA)$	BPc-1	1487.79	-1620.94 (-)	60.72 (-)	-72.43	-20.56	-92.99
$\langle c, c, \hat{u} \lambda c \rangle$	BPc	-844.93	1074.09 (756.43)	-98.34 (-27.66)	130.82	6.14	136.96
$(S_0S_1 H AC)$	BPc-1	-800.16	1052.32 (-)	-108.06 (-)	144.1	7.71	151.81
$\langle S_1 S_0 \hat{H} CA \rangle$	BPc	-844.93	1074.09 (756.43)	-98.34 (-27.66)	130.82	8.45	139.27
	BPc-1	-800.16	1052.32 (-)	-108.06 (-)	144.1	11.48	155.58
	BPc	-849.94	958.31 (-29.47)	-42.13 (9.61)	66.24	9.52	75.75
$(S_1S_0 \Pi AC)$	BPc-1	-1487.79	1620.94 (-)	-60.72 (-)	72.43	22.91	95.34
$(\mathbf{c} \mathbf{c} \hat{\boldsymbol{u}} \mathbf{T} \mathbf{T})$	BPc	-	-	-	-	-0.1	-0.1
$(S_0S_1 H 11)$	BPc-1	-	-	-	-	-0.07	-0.07
$(\mathbf{c} \mathbf{c} \hat{\boldsymbol{u}} \mathbf{T} \mathbf{T})$	BPc	-	-	-	-	-0.04	-0.04
(S ₁ S ₀ H 11)	BPc-1	-	-	-	-	-0.15	-0.15
$(C \wedge \widehat{u} = T)$	BPc	-410.18	415.55 (76.94)	-5.97 (2.47)	-0.6	25.51	24.91
(CA H II)	BPc-1	-325.30	329.61 (-)	-4.07 (-)	0.24	27.76	28.00
$(\Lambda c \hat{u} TT)$	BPc	620.76	-611.50 (-281.04)	-4.04 (3.59)	5.22	-3.72	1.51
	BPc-1	381.06	-359.59 (-)	-11.70 (-)	9.77	3.17	12.93

Table S32. Decomposition of electronic coupling of BPc at 5.0 ns in MD simulation. (meV)

Table S33. Energies of five diabatic states of BPc at 5.0 ns in MD simulation. (eV)

	$E_{S_0S_1}$	$E_{S_1S_0}$	E _{CA}	E _{AC}	E _{TT}
BPc	2.73	2.70	2.97	2.82	1.32
BPc-1	2.67	2.66	2.95	2.91	1.36

Table S34. Effective electronic couplings $(|V_{eff}|^2)$, time constants (τ) of singlet fission in bipentacene systems. $|V_{eff}|_{10}^2$ is the average effective electronic coupling at 10 molecular dynamics snapshots. The initial states for $|V_{eff}|_{S}^2$ (eV²) and τ_{S} (fs) calculation are the linear combination of two local excited states with the largest transition dipole.

	$ V_{\rm eff} _{10}^2 ({\rm meV}^2)$	$ V_{\rm eff} _S^2 ({\rm meV}^2)$	τ (ps)	τ_{S} (ps)	τ_{exp} (ps)
BPc	10.41	9.26	10.3	11.5	13.8
BP1	0.21	0.21	228.8	228.8	20.0

4. Molecular design

Figure S8

Figure S8 (continued)

Figure S8. The designed bipentacene macrocycles for iSF. In parentheses are the labels of the corresponding molecules in the main text. According to the regions of Fig. 5b in the main text where the slipped distance (T/L) is located, use the same colour label.

Figure S9. Model molecular packing in designed bipentacene macrocycles. H, L and T are the slipped distances between the centre of mass of the two pentacenes along the vertical, longitudinal and transverse axes, respectively. (b) Relationship between SF time constant (in ps) and pentacene slipped distances (H = 3.4 Å). Reproduced with permission 29. Copyright 2014, American Chemical Society. (c) SF time constants of 19 screened bipentacene macrocycles, calculated with the initial state being the linear combination of two local excited states with the largest transition dipole.

Table S35. Electronic couplings $\langle i | \hat{H} | j \rangle$ ($i \neq j$, meV), energies $\langle i | \hat{H} | i \rangle$ (eV), averaged effective electron couplings $|V_{\text{eff}}|_{10}^2$ (eV²) and SF time constants τ (fs) of nineteen bipentacene macrocycles. The initial states for $|V_{\text{eff}}|_{S}^2$ (eV²) and τ_S (fs) calculation are the linear combination of two local excited states with the largest transition dipole. Variances (eV⁴) are calculated by $s^2 = \frac{\sum (V_{\text{eff}} - \overline{V}_{\text{eff}})^2}{N}$.

	0.5 ns	1.0 ns	1.5 ns	2.0 ns	2.5 ns	3.0 ns	3.5 ns	4.0 ns	4.5 ns	5.0 ns
]	BPc1					
$\langle S_0 S_1 \hat{H} CA \rangle$	-44.63	46.30	50.26	-35.75	-39.21	42.82	73.90	108.82	20.42	-34.27
$\langle S_0 S_1 \hat{H} AC \rangle$	44.19	141.33	127.52	64.88	57.92	89.44	73.07	110.84	46.16	58.59
$\langle S_1 S_0 \hat{H} CA \rangle$	-43.02	-138.27	-131.18	-61.76	-59.16	-79.36	-69.53	-106.28	-37.88	-57.01
$\langle S_1 S_0 \hat{H} AC \rangle$	40.25	-44.87	-45.42	36.41	38.98	-47.01	-83.73	-119.05	-27.28	31.66
$\langle S_0 S_1 \hat{H} TT \rangle$	-1.20	-0.36	1.24	-1.09	-1.88	-0.80	-2.14	1.74	0.14	-1.70
$\langle S_1 S_0 \hat{H} TT \rangle$	0.49	0.05	0.76	1.18	0.02	-0.93	1.35	-1.65	0.18	1.96
$\langle CA \hat{H} TT \rangle$	-62.74	-11.25	137.10	-69.55	-118.20	67.83	114.66	-75.03	-88.28	-99.70
$\langle AC \hat{H} TT \rangle$	-10.04	-112.93	20.41	-58.23	0.86	168.87	155.81	-134.75	-147.56	-59.30
$\langle S_0 S_1 \hat{H} S_0 S_1 \rangle$	2.79	2.67	2.64	2.72	2.76	2.69	2.52	2.59	2.87	2.64
$\langle S_1 S_0 \hat{H} S_1 S_0 \rangle$	2.83	2.66	2.67	3.00	2.98	2.71	2.81	2.77	2.79	2.85
$\langle CA \hat{H} CA \rangle$	3.30	2.87	3.00	3.27	3.31	3.10	3.20	3.30	3.32	3.19
$\langle AC \hat{H} AC \rangle$	3.31	2.88	2.96	3.39	3.43	3.05	3.23	3.00	3.29	3.15
$\langle \mathrm{TT} \widehat{H} \mathrm{TT} \rangle$	1.86	1.37	1.29	1.87	1.82	1.49	1.57	1.52	1.62	1.55
$ V_{\rm eff} _{10}^2$ (variance)					1.82×10 ⁻⁴ (4.27×10 ⁻⁸)				
τ					58′	7.0				
$ V_{\rm eff} _{S}^{2}$ (variance)					2.66×10 ⁻⁴ (8.66×10-8)				

$ au_S$	401.2									
				ŀ	3Pc2					
$\langle S_0 S_1 \hat{H} CA \rangle$	31.31	4.64	20.78	-13.23	41.19	0.48	26.01	34.26	23.18	21.37
$\langle S_0 S_1 \hat{H} AC \rangle$	158.65	120.31	84.97	85.34	-58.56	151.21	163.26	96.85	145.44	-15.89
$\langle S_1 S_0 \hat{H} CA \rangle$	-147.34	-99.73	-67.51	-68.19	83.08	-150.91	-156.50	-115.34	-157.07	56.46
$\langle S_1 S_0 \hat{H} AC \rangle$	-27.76	-10.77	-17.77	10.90	-42.22	-2.21	-29.25	-34.47	-21.10	-23.22
$\langle S_0 S_1 \hat{H} TT \rangle$	-0.30	1.30	-2.68	-0.72	-1.74	-0.73	-1.29	0.79	-1.78	-47.14
$\langle S_1 S_0 \hat{H} TT \rangle$	4.22	-0.77	2.04	0.82	-0.91	-0.26	2.47	-0.39	0.62	-66.26
$\langle CA \hat{H} TT \rangle$	321.93	154.97	-114.89	-131.87	-4.33	-112.31	247.23	-125.27	103.26	3.11
$\langle AC \hat{H} TT \rangle$	211.01	75.30	92.51	-11.49	-193.18	-83.76	198.08	-147.64	175.07	35.05
$\langle S_0 S_1 \hat{H} S_0 S_1 \rangle$	2.80	2.91	2.84	2.95	2.92	2.97	2.76	2.77	3.04	3.09
$\langle S_1 S_0 \hat{H} S_1 S_0 \rangle$	2.80	2.79	2.96	2.95	2.96	3.07	2.81	3.15	3.03	3.35
$\langle CA \hat{H} CA \rangle$	3.15	3.32	3.35	3.35	3.41	3.54	3.11	3.42	3.47	2.73
$\langle AC \hat{H} AC \rangle$	3.12	3.16	3.35	3.40	3.26	3.51	3.12	3.43	3.56	3.02
$\langle TT \hat{H} TT \rangle$	1.55	1.57	1.80	1.89	1.86	2.20	1.45	1.92	2.12	4.72
$ V_{\rm eff} _{10}^2$					0 80×10-4	(1.60×10-6)				
(variance)					10	(1.00×10)				
$\frac{\tau}{ V_{e^{cc}} _{\alpha}^2}$		108.1								
(variance)					1.25×10-3	(3.01×10 ⁻⁶)				
$ au_S$		85.7								
<u> </u>				E	BPc3					
$\langle S_0 S_1 \hat{H} CA \rangle$	273.96	238.44	244.26	207.77	231.10	222.63	194.12	237.42	251.79	153.89
$\langle S_0 S_1 \hat{H} AC \rangle$	306.66	203.11	200.11	274.16	251.34	288.58	238.55	280.20	202.87	92.51
$\langle S_1 S_0 \hat{H} CA \rangle$	-305.25	-202.18	-196.25	-262.03	-258.13	-272.92	-249.80	-257.51	-203.92	-98.18
$\langle S_1 S_0 \hat{H} AC \rangle$	-283.10	-244.50	-245.61	-216.73	-222.23	-236.47	-193.82	-265.90	-248.56	-141.65
$\langle S_0 S_1 \hat{H} TT \rangle$	-0.46	-0.61	-3.39	-0.24	1.30	0.98	1.80	-5.62	-1.25	2.64
$\langle S_1 S_0 \hat{H} TT \rangle$	0.19	0.72	1.77	-1.67	-0.70	-0.85	0.16	3.39	3.33	-2.74
$\langle CA \hat{H} TT \rangle$	33.41	-1.38	32.71	-83.10	-28.08	68.70	-75.97	65.95	94.08	-96.22
$\langle AC \hat{H} TT \rangle$	-55.05	-35.42	34.92	86.73	43.43	13.34	-39.05	60.84	-92.17	7.81
$\langle S_0 S_1 \hat{H} S_0 S_1 \rangle$	2.93	2.78	2.80	3.13	2.89	2.94	2.83	2.71	2.88	3.02
$\langle S_1 S_0 \hat{H} S_1 S_0 \rangle$	2.99	3.01	2.75	2.86	2.84	2.82	2.85	3.13	2.97	2.97
$\langle CA \hat{H} CA \rangle$	2.89	2.84	2.74	2.92	2.78	2.78	2.78	2.92	2.81	2.72
$\langle AC \hat{H} AC \rangle$	3.10	2.88	2.68	2.92	2.80	2.73	2.73	2.79	2.88	2.92
$\langle TT \hat{H} TT \rangle$	1.82	1.66	1.39	1.93	1.52	1.45	1.58	1.79	1.91	1.85
$ V_{\rm eff} _{10}^2$					1.14×10 ⁻³	(3.14×10 ⁻⁶)				
(variance)					94	l.1				
$ V_{\rm eff} _S^2$					1 19×10 ⁻³	(2 50×10 ⁻⁶)				
(variance)						(2.50 10)				
$ au_S$				T	85 DD-4)./				
(S.S. A C A)	50.06	0.22	5 8/		96 78	_7.82	62.11	33.07	_31 /0	73.12
$(S_0S_1 \hat{H} \Delta C)$	-19.00	-37 33	-19 49	-2-1.34	38 11	40.99	131 55	79 47	71.98	57 28
$(S_1 S_1 \hat{H} C \Lambda)$	_2 52	31.60	-12.72 2/ 80	157 21	_46 75	-78 57	_122 51	_78.86	-64 20	-54.68
$(S_1 S_0 \hat{\mu} \Lambda C)$	-3.35	6 26	-26.34	30.70	-90.75	3 20	-135.51	-32 50	27.58	-75 50
$(S_1 S_0 \hat{\mu} KC)$ $(S_1 S_1 \hat{\mu} TT)$	-50.57	_3 70	-20.34	2 01	-) 04 2 06	_0.58	-//. 4 2	0.27	1 12	2 07
$(3_0 3_1 1 1 1)$ /(() \hat{U} TT)	0.25	-5.70	1 21	-0.45	-0.34	0.24	1 24	_1.05	1.12	2.07 _3.07
\3130 11 11) /CA 印 TT\	-103.67	-5 32	1.21	-0.4J 57 02	-0.34	-68 10	1.24 2.85	-1.05	1.29	-3.21
<i>ערו 11 11 11 (</i> ער <i>ו</i> 11 11 11 11 11 11 11 11	186.62	-5.52 80.09	_170.28	_07 /0	-0.45	-176 58	2.05	-100.13	126 //	21 28
رمی (۲) (۲) (۲) (۲) (۲) (۲) (۲) (۲) (۲) (۲)	2 75	2 02.20	2 80	2 00	2 78	2 05	2 83	211.27	2 0.44	2 71
(5,5,1) (5,5,1) (5,5)	3.04	2.92	2.09	3.03	3.00	3.01	2.05	2.72	3.05	2.71
(CA Ĥ CA)	2 90	2.97	3.01	3.05	2.00	3 33	2.92	2.71	3.05	2.99
$\langle CA \hat{H} CA \rangle$	2.90	2.96	3.01	3.12	2.96	3.33	2.98	2.75	3.17	2.97

$\langle TT \hat{H} TT\rangle$	2.80 1.73	3.12 1.89	2.98 1.70	3.14 1.94	2.91 1.63	3.23 2.04	2.92 1.76	2.61 1.15	3.18 2.18	2.94 1.59	
$ V_{eff} _{10}^2$	1.75	1.09	1.70	1.91	2.17, 10-4	2.01	1.70	1.15	2.10	1.57	
(variance)	2.1/^10 (0.70^10°)										
τ	493.7										
$ V_{eff} _{\overline{S}}$ (variance)	2.60×10 ⁻⁴ (1.65×10 ⁻⁷)										
τ_S	410.9										
				I	BPc5						
$\langle S_0 S_1 \hat{H} CA \rangle$	-130.74	-91.43	-58.16	20.19	5.06	-27.25	-34.26	-23.70	-99.64	-20.29	
$\langle S_0 S_1 \hat{H} AC \rangle$	287.22	262.74	142.26	47.47	310.18	49.40	257.96	246.04	285.83	303.12	
$\langle S_1 S_0 H CA \rangle$	-296.38	-266.99	-125.27	-58.13	-295.10	-25.48	-253.63	-246.11	-287.16	-305.06	
$\langle S_1 S_0 H AC \rangle$	136.03	77.33	78.62	11.42	-5.90	-9.04	21.51	30.80	99.82	12.73	
$\langle S_0 S_1 H T^T \rangle$	2.90	0.95	-1.38	6.50	-2.00	-6.58	-3.85	2.63	2.19	-4.29	
$\langle S_1 S_0 H T^T \rangle$	-2.37	2.57	1.00	-4.65	3.07	10.24	2.87	-3.60	-4.51	5.04	
$\langle CA H TT \rangle$	188.63	-243.23	-60.17	-18.77	11.63	-34.58	-197.56	168.38	181.63	-141.44	
$\langle AC H TT \rangle$	202.63	-268.70	-90.85	31.67	-327.26	-113.69	-117.97	228.56	248.66	-196.05	
$\langle S_0 S_1 H S_0 S_1 \rangle$	2.87	2.88	2.75	3.20	3.08	3.09	2.97	2.94	2.77	2.89	
$\langle S_1 S_0 H S_1 S_0 \rangle$	3.26	3.29	3.16	3.04	2.96	3.26	3.11	3.29	3.11	3.30	
$\langle CA H CA \rangle$	3.20	3.20	2.97	3.10	2.85	3.26	3.22	3.14	3.00	3.15	
$\langle AC H AC \rangle$	3.19	3.20	3.16	3.20	3.21	3.21	3.06	3.31	2.99	3.04	
$\langle TT H TT \rangle$	2.11	2.14	1.66	2.31	1.91	2.56	2.25	2.22	1.73	2.14	
$ V_{eff} _{10}^{2}$	5.08×10 ⁻³ (6.01×10 ⁻⁵)										
(variance)	21.0										
$ V_{\rm eff} _{S}^{2}$					4.23×10 ⁻³ ((1.25×10 ⁻⁵)					
(variance) τ_s					25	.2					
5				I	BPc6						
$\langle S_0 S_1 \hat{H} CA \rangle$	-26.10	-20.59	44.70	-17.38	43.76	-124.24	-49.92	50.90	-0.97	-99.05	
$\langle S_0 S_1 \hat{H} CA \rangle$ $\langle S_0 S_1 \hat{H} AC \rangle$	-26.10 296.50	-20.59 -46.29	44.70 260.57	-17.38 296.25	43.76 181.15	-124.24 336.39	-49.92 232.91	50.90 391.29	-0.97 300.17	-99.05 285.66	
	-26.10 296.50 -293.22	-20.59 -46.29 27.84	44.70 260.57 -273.91	-17.38 296.25 -309.79	43.76 181.15 -194.51	-124.24 336.39 -327.10	-49.92 232.91 -222.88	50.90 391.29 -393.64	-0.97 300.17 -290.16	-99.05 285.66 -300.90	
	-26.10 296.50 -293.22 27.50	-20.59 -46.29 27.84 42.39	44.70 260.57 -273.91 -45.54	-17.38 296.25 -309.79 20.39	43.76 181.15 -194.51 -39.33	-124.24 336.39 -327.10 119.12	-49.92 232.91 -222.88 62.29	50.90 391.29 -393.64 -43.65	-0.97 300.17 -290.16 9.95	-99.05 285.66 -300.90 99.20	
	-26.10 296.50 -293.22 27.50 -4.83	-20.59 -46.29 27.84 42.39 -2.62	44.70 260.57 -273.91 -45.54 -1.33	-17.38 296.25 -309.79 20.39 -1.41	43.76 181.15 -194.51 -39.33 0.97	-124.24 336.39 -327.10 119.12 -6.12	-49.92 232.91 -222.88 62.29 -2.97	50.90 391.29 -393.64 -43.65 -7.65	-0.97 300.17 -290.16 9.95 2.20	-99.05 285.66 -300.90 99.20 2.42	
	-26.10 296.50 -293.22 27.50 -4.83 4.42	-20.59 -46.29 27.84 42.39 -2.62 -2.78	44.70 260.57 -273.91 -45.54 -1.33 3.91	-17.38 296.25 -309.79 20.39 -1.41 0.15	43.76 181.15 -194.51 -39.33 0.97 -2.06	-124.24 336.39 -327.10 119.12 -6.12 3.36	-49.92 232.91 -222.88 62.29 -2.97 4.21	50.90 391.29 -393.64 -43.65 -7.65 3.48	-0.97 300.17 -290.16 9.95 2.20 -6.47	-99.05 285.66 -300.90 99.20 2.42 -4.20	
	-26.10 296.50 -293.22 27.50 -4.83 4.42 -205.33	-20.59 -46.29 27.84 42.39 -2.62 -2.78 -51.05	44.70 260.57 -273.91 -45.54 -1.33 3.91 -154.19	-17.38 296.25 -309.79 20.39 -1.41 0.15 -291.72	43.76 181.15 -194.51 -39.33 0.97 -2.06 89.79	-124.24 336.39 -327.10 119.12 -6.12 3.36 -254.82	-49.92 232.91 -222.88 62.29 -2.97 4.21 -110.75	50.90 391.29 -393.64 -43.65 -7.65 3.48 -354.62	-0.97 300.17 -290.16 9.95 2.20 -6.47 121.76	-99.05 285.66 -300.90 99.20 2.42 -4.20 202.63	
	-26.10 296.50 -293.22 27.50 -4.83 4.42 -205.33 -199.52	-20.59 -46.29 27.84 42.39 -2.62 -2.78 -51.05 17.60	44.70 260.57 -273.91 -45.54 -1.33 3.91 -154.19 -224.71	-17.38 296.25 -309.79 20.39 -1.41 0.15 -291.72 5.65	43.76 181.15 -194.51 -39.33 0.97 -2.06 89.79 184.15	-124.24 336.39 -327.10 119.12 -6.12 3.36 -254.82 -276.63	-49.92 232.91 -222.88 62.29 -2.97 4.21 -110.75 -131.56	50.90 391.29 -393.64 -43.65 -7.65 3.48 -354.62 -259.19	-0.97 300.17 -290.16 9.95 2.20 -6.47 121.76 321.45	-99.05 285.66 -300.90 99.20 2.42 -4.20 202.63 195.36	
	-26.10 296.50 -293.22 27.50 -4.83 4.42 -205.33 -199.52 2.72	-20.59 -46.29 27.84 42.39 -2.62 -2.78 -51.05 17.60 2.68	44.70 260.57 -273.91 -45.54 -1.33 3.91 -154.19 -224.71 2.73	-17.38 296.25 -309.79 20.39 -1.41 0.15 -291.72 5.65 2.71	43.76 181.15 -194.51 -39.33 0.97 -2.06 89.79 184.15 2.74	-124.24 336.39 -327.10 119.12 -6.12 3.36 -254.82 -276.63 2.74	-49.92 232.91 -222.88 62.29 -2.97 4.21 -110.75 -131.56 2.73	50.90 391.29 -393.64 -43.65 -7.65 3.48 -354.62 -259.19 2.89	-0.97 300.17 -290.16 9.95 2.20 -6.47 121.76 321.45 2.65	-99.05 285.66 -300.90 99.20 2.42 -4.20 202.63 195.36 2.82	
	-26.10 296.50 -293.22 27.50 -4.83 4.42 -205.33 -199.52 2.72 2.81	-20.59 -46.29 27.84 42.39 -2.62 -2.78 -51.05 17.60 2.68 2.91	44.70 260.57 -273.91 -45.54 -1.33 3.91 -154.19 -224.71 2.73 2.93	-17.38 296.25 -309.79 20.39 -1.41 0.15 -291.72 5.65 2.71 2.80	43.76 181.15 -194.51 -39.33 0.97 -2.06 89.79 184.15 2.74 2.90	-124.24 336.39 -327.10 119.12 -6.12 3.36 -254.82 -276.63 2.74 2.67	-49.92 232.91 -222.88 62.29 -2.97 4.21 -110.75 -131.56 2.73 2.71	50.90 391.29 -393.64 -43.65 -7.65 3.48 -354.62 -259.19 2.89 2.84	-0.97 300.17 -290.16 9.95 2.20 -6.47 121.76 321.45 2.65 2.72	-99.05 285.66 -300.90 99.20 2.42 -4.20 202.63 195.36 2.82 2.75	
	-26.10 296.50 -293.22 27.50 -4.83 4.42 -205.33 -199.52 2.72 2.81 2.63	-20.59 -46.29 27.84 42.39 -2.62 -2.78 -51.05 17.60 2.68 2.91 2.80	44.70 260.57 -273.91 -45.54 -1.33 3.91 -154.19 -224.71 2.73 2.93 2.76	-17.38 296.25 -309.79 20.39 -1.41 0.15 -291.72 5.65 2.71 2.80 2.63	43.76 181.15 -194.51 -39.33 0.97 -2.06 89.79 184.15 2.74 2.90 2.84	-124.24 336.39 -327.10 119.12 -6.12 3.36 -254.82 -276.63 2.74 2.67 2.54	-49.92 232.91 -222.88 62.29 -2.97 4.21 -110.75 -131.56 2.73 2.71 2.63	50.90 391.29 -393.64 -43.65 -7.65 3.48 -354.62 -259.19 2.89 2.84 2.80	-0.97 300.17 -290.16 9.95 2.20 -6.47 121.76 321.45 2.65 2.72 2.40	-99.05 285.66 -300.90 99.20 2.42 -4.20 202.63 195.36 2.82 2.75 2.78	
	-26.10 296.50 -293.22 27.50 -4.83 4.42 -205.33 -199.52 2.72 2.81 2.63 2.70	-20.59 -46.29 27.84 42.39 -2.62 -2.78 -51.05 17.60 2.68 2.91 2.80 2.68	44.70 260.57 -273.91 -45.54 -1.33 3.91 -154.19 -224.71 2.73 2.93 2.76 2.84	-17.38 296.25 -309.79 20.39 -1.41 0.15 -291.72 5.65 2.71 2.80 2.63 2.59	43.76 181.15 -194.51 -39.33 0.97 -2.06 89.79 184.15 2.74 2.90 2.84 2.92	-124.24 336.39 -327.10 119.12 -6.12 3.36 -254.82 -276.63 2.74 2.67 2.54 2.50	-49.92 232.91 -222.88 62.29 -2.97 4.21 -110.75 -131.56 2.73 2.71 2.63 2.56	50.90 391.29 -393.64 -43.65 -7.65 3.48 -354.62 -259.19 2.89 2.84 2.80 2.62	-0.97 300.17 -290.16 9.95 2.20 -6.47 121.76 321.45 2.65 2.72 2.40 2.55	-99.05 285.66 -300.90 99.20 2.42 -4.20 202.63 195.36 2.82 2.75 2.78 2.61	
	-26.10 296.50 -293.22 27.50 -4.83 4.42 -205.33 -199.52 2.72 2.81 2.63 2.70 1.15	-20.59 -46.29 27.84 42.39 -2.62 -2.78 -51.05 17.60 2.68 2.91 2.80 2.68 1.11	44.70 260.57 -273.91 -45.54 -1.33 3.91 -154.19 -224.71 2.73 2.93 2.76 2.84 1.16	-17.38 296.25 -309.79 20.39 -1.41 0.15 -291.72 5.65 2.71 2.80 2.63 2.59 0.77	43.76 181.15 -194.51 -39.33 0.97 -2.06 89.79 184.15 2.74 2.90 2.84 2.92 1.13	-124.24 336.39 -327.10 119.12 -6.12 3.36 -254.82 -276.63 2.74 2.67 2.54 2.50 0.70	-49.92 232.91 -222.88 62.29 -2.97 4.21 -110.75 -131.56 2.73 2.71 2.63 2.56 0.98	50.90 391.29 -393.64 -43.65 -7.65 3.48 -354.62 -259.19 2.89 2.84 2.80 2.62 1.48	$\begin{array}{r} -0.97\\ 300.17\\ -290.16\\ 9.95\\ 2.20\\ -6.47\\ 121.76\\ 321.45\\ 2.65\\ 2.72\\ 2.40\\ 2.55\\ 0.70\\ \end{array}$	-99.05 285.66 -300.90 99.20 2.42 -4.20 202.63 195.36 2.82 2.75 2.78 2.61 0.91	
	-26.10 296.50 -293.22 27.50 -4.83 4.42 -205.33 -199.52 2.72 2.81 2.63 2.70 1.15	-20.59 -46.29 27.84 42.39 -2.62 -2.78 -51.05 17.60 2.68 2.91 2.80 2.68 1.11	44.70 260.57 -273.91 -45.54 -1.33 3.91 -154.19 -224.71 2.73 2.93 2.76 2.84 1.16	-17.38 296.25 -309.79 20.39 -1.41 0.15 -291.72 5.65 2.71 2.80 2.63 2.59 0.77	43.76 181.15 -194.51 -39.33 0.97 -2.06 89.79 184.15 2.74 2.90 2.84 2.92 1.13 9.24×10 ⁻³ (-124.24 336.39 -327.10 119.12 -6.12 3.36 -254.82 -276.63 2.74 2.67 2.54 2.50 0.70 (3.25×10 ⁻⁴)	-49.92 232.91 -222.88 62.29 -2.97 4.21 -110.75 -131.56 2.73 2.71 2.63 2.56 0.98	50.90 391.29 -393.64 -43.65 -7.65 3.48 -354.62 -259.19 2.89 2.84 2.80 2.62 1.48	-0.97 300.17 -290.16 9.95 2.20 -6.47 121.76 321.45 2.65 2.72 2.40 2.55 0.70	-99.05 285.66 -300.90 99.20 2.42 -4.20 202.63 195.36 2.82 2.75 2.78 2.61 0.91	
	-26.10 296.50 -293.22 27.50 -4.83 4.42 -205.33 -199.52 2.72 2.81 2.63 2.70 1.15	-20.59 -46.29 27.84 42.39 -2.62 -2.78 -51.05 17.60 2.68 2.91 2.80 2.68 1.11	44.70 260.57 -273.91 -45.54 -1.33 3.91 -154.19 -224.71 2.73 2.93 2.76 2.84 1.16	-17.38 296.25 -309.79 20.39 -1.41 0.15 -291.72 5.65 2.71 2.80 2.63 2.59 0.77	43.76 181.15 -194.51 -39.33 0.97 -2.06 89.79 184.15 2.74 2.90 2.84 2.92 1.13 9.24×10 ⁻³ (-124.24 336.39 -327.10 119.12 -6.12 3.36 -254.82 -276.63 2.74 2.67 2.54 2.50 0.70 (3.25×10 ⁻⁴) .6	-49.92 232.91 -222.88 62.29 -2.97 4.21 -110.75 -131.56 2.73 2.71 2.63 2.56 0.98	50.90 391.29 -393.64 -43.65 -7.65 3.48 -354.62 -259.19 2.89 2.84 2.80 2.62 1.48	-0.97 300.17 -290.16 9.95 2.20 -6.47 121.76 321.45 2.65 2.72 2.40 2.55 0.70	-99.05 285.66 -300.90 99.20 2.42 -4.20 202.63 195.36 2.82 2.75 2.78 2.61 0.91	
	-26.10 296.50 -293.22 27.50 -4.83 4.42 -205.33 -199.52 2.72 2.81 2.63 2.70 1.15	-20.59 -46.29 27.84 42.39 -2.62 -2.78 -51.05 17.60 2.68 2.91 2.80 2.68 1.11	44.70 260.57 -273.91 -45.54 -1.33 3.91 -154.19 -224.71 2.73 2.93 2.76 2.84 1.16	-17.38 296.25 -309.79 20.39 -1.41 0.15 -291.72 5.65 2.71 2.80 2.63 2.59 0.77	43.76 181.15 -194.51 -39.33 0.97 -2.06 89.79 184.15 2.74 2.90 2.84 2.92 1.13 9.24×10 ⁻³ (11 1.38×10 ⁻² (-124.24 336.39 -327.10 119.12 -6.12 3.36 -254.82 -276.63 2.74 2.67 2.54 2.50 0.70 (3.25×10 ⁻⁴) .6	-49.92 232.91 -222.88 62.29 -2.97 4.21 -110.75 -131.56 2.73 2.71 2.63 2.56 0.98	50.90 391.29 -393.64 -43.65 -7.65 3.48 -354.62 -259.19 2.89 2.84 2.80 2.62 1.48	-0.97 300.17 -290.16 9.95 2.20 -6.47 121.76 321.45 2.65 2.72 2.40 2.55 0.70	-99.05 285.66 -300.90 99.20 2.42 -4.20 202.63 195.36 2.82 2.75 2.78 2.61 0.91	
	-26.10 296.50 -293.22 27.50 -4.83 4.42 -205.33 -199.52 2.72 2.81 2.63 2.70 1.15	-20.59 -46.29 27.84 42.39 -2.62 -2.78 -51.05 17.60 2.68 2.91 2.80 2.68 1.11	44.70 260.57 -273.91 -45.54 -1.33 3.91 -154.19 -224.71 2.73 2.93 2.76 2.84 1.16	-17.38 296.25 -309.79 20.39 -1.41 0.15 -291.72 5.65 2.71 2.80 2.63 2.59 0.77	43.76 181.15 -194.51 -39.33 0.97 -2.06 89.79 184.15 2.74 2.90 2.84 2.92 1.13 9.24×10 ⁻³ (11 1.38×10 ⁻² (7.	-124.24 336.39 -327.10 119.12 -6.12 3.36 -254.82 -276.63 2.74 2.67 2.54 2.50 0.70 (3.25×10 ⁻⁴) .6 (7.39×10 ⁻⁴) 8	-49.92 232.91 -222.88 62.29 -2.97 4.21 -110.75 -131.56 2.73 2.71 2.63 2.56 0.98	50.90 391.29 -393.64 -43.65 -7.65 3.48 -354.62 -259.19 2.89 2.84 2.80 2.62 1.48	-0.97 300.17 -290.16 9.95 2.20 -6.47 121.76 321.45 2.65 2.72 2.40 2.55 0.70	-99.05 285.66 -300.90 99.20 2.42 -4.20 202.63 195.36 2.82 2.75 2.78 2.61 0.91	
$ \begin{array}{l} \langle \mathbf{S}_0 \mathbf{S}_1 \hat{H} \mathbf{C} \mathbf{A} \rangle \\ \langle \mathbf{S}_0 \mathbf{S}_1 \hat{H} \mathbf{A} \mathbf{C} \rangle \\ \langle \mathbf{S}_1 \mathbf{S}_0 \hat{H} \mathbf{C} \mathbf{A} \rangle \\ \langle \mathbf{S}_1 \mathbf{S}_0 \hat{H} \mathbf{C} \mathbf{A} \rangle \\ \langle \mathbf{S}_0 \mathbf{S}_1 \hat{H} \mathbf{T} \mathbf{T} \rangle \\ \langle \mathbf{S}_1 \mathbf{S}_0 \hat{H} \mathbf{T} \mathbf{T} \rangle \\ \langle \mathbf{C} \mathbf{A} \hat{H} \mathbf{T} \mathbf{T} \rangle \\ \langle \mathbf{C} \mathbf{A} \hat{H} \mathbf{T} \mathbf{T} \rangle \\ \langle \mathbf{A} \mathbf{C} \hat{H} \mathbf{T} \mathbf{T} \rangle \\ \langle \mathbf{S}_0 \mathbf{S}_1 \hat{H} \mathbf{S}_0 \mathbf{S}_1 \rangle \\ \langle \mathbf{S}_1 \mathbf{S}_0 \hat{H} \mathbf{S}_1 \mathbf{S}_0 \rangle \\ \langle \mathbf{C} \mathbf{A} \hat{H} \mathbf{C} \mathbf{A} \rangle \\ \langle \mathbf{C} \mathbf{A} \hat{H} \mathbf{C} \mathbf{A} \rangle \\ \langle \mathbf{C} \mathbf{C} \hat{H} \mathbf{C} \mathbf{A} \rangle \\ \langle \mathbf{C} \mathbf{C} \hat{H} \mathbf{C} \mathbf{A} \rangle \\ \langle \mathbf{C} \mathbf{C} \hat{H} \mathbf{C} \mathbf{A} \rangle \\ \langle \mathbf{T} \mathbf{T} \hat{H} \mathbf{T} \mathbf{T} \rangle \\ V_{\text{eff}} _{10}^2 \\ (\text{variance}) \\ \tau \\ V_{\text{eff}} _{S}^2 \\ (\text{variance}) \\ \tau_S \end{array} $	-26.10 296.50 -293.22 27.50 -4.83 4.42 -205.33 -199.52 2.72 2.81 2.63 2.70 1.15	-20.59 -46.29 27.84 42.39 -2.62 -2.78 -51.05 17.60 2.68 2.91 2.80 2.68 1.11	44.70 260.57 -273.91 -45.54 -1.33 3.91 -154.19 -224.71 2.73 2.93 2.76 2.84 1.16	-17.38 296.25 -309.79 20.39 -1.41 0.15 -291.72 5.65 2.71 2.80 2.63 2.59 0.77	43.76 181.15 -194.51 -39.33 0.97 -2.06 89.79 184.15 2.74 2.90 2.84 2.92 1.13 9.24×10 ⁻³ (11 1.38×10 ⁻² (7. 3Pc7	-124.24 336.39 -327.10 119.12 -6.12 3.36 -254.82 -276.63 2.74 2.67 2.54 2.50 0.70 (3.25×10 ⁻⁴) .6 (7.39×10 ⁻⁴)	-49.92 232.91 -222.88 62.29 -2.97 4.21 -110.75 -131.56 2.73 2.71 2.63 2.56 0.98	50.90 391.29 -393.64 -43.65 -7.65 3.48 -354.62 -259.19 2.89 2.84 2.80 2.62 1.48	-0.97 300.17 -290.16 9.95 2.20 -6.47 121.76 321.45 2.65 2.72 2.40 2.55 0.70	-99.05 285.66 -300.90 99.20 2.42 -4.20 202.63 195.36 2.82 2.75 2.78 2.61 0.91	
$ \begin{array}{c} \langle S_0 S_1 \hat{H} CA \rangle \\ \langle S_0 S_1 \hat{H} AC \rangle \\ \langle S_1 S_0 \hat{H} CA \rangle \\ \langle S_1 S_0 \hat{H} CA \rangle \\ \langle S_0 S_1 \hat{H} TT \rangle \\ \langle S_0 S_1 \hat{H} TT \rangle \\ \langle CA \hat{H} TT \rangle \\ \langle CA \hat{H} TT \rangle \\ \langle AC \hat{H} S_0 S_1 \rangle \\ \langle S_0 S_1 \hat{H} S_0 S_1 \rangle \\ \langle S_1 S_0 \hat{H} S_1 S_0 \rangle \\ \langle CA \hat{H} CA \rangle \\ \langle AC \hat{H} AC \rangle \\ \langle AC \hat{H} CA \rangle \\ \langle AC \hat{H} AC \rangle \\ \langle TT \hat{H} TT \rangle \\ V_{eff} _{10}^2 \\ (variance) \\ \tau_S \\ \hline \end{array} $	-26.10 296.50 -293.22 27.50 -4.83 4.42 -205.33 -199.52 2.72 2.81 2.63 2.70 1.15	-20.59 -46.29 27.84 42.39 -2.62 -2.78 -51.05 17.60 2.68 2.91 2.80 2.68 1.11	44.70 260.57 -273.91 -45.54 -1.33 3.91 -154.19 -224.71 2.73 2.93 2.76 2.84 1.16	-17.38 296.25 -309.79 20.39 -1.41 0.15 -291.72 5.65 2.71 2.80 2.63 2.59 0.77 H -94.57	43.76 181.15 -194.51 -39.33 0.97 -2.06 89.79 184.15 2.74 2.90 2.84 2.92 1.13 9.24×10 ⁻³ (11 1.38×10 ⁻² (7. BPc7 210.87	-124.24 336.39 -327.10 119.12 -6.12 3.36 -254.82 -276.63 2.74 2.67 2.54 2.50 0.70 (3.25×10 ⁻⁴) .6 (7.39×10 ⁻⁴) 8 72.04	-49.92 232.91 -222.88 62.29 -2.97 4.21 -110.75 -131.56 2.73 2.71 2.63 2.56 0.98	50.90 391.29 -393.64 -43.65 -7.65 3.48 -354.62 -259.19 2.89 2.84 2.80 2.62 1.48	-0.97 300.17 -290.16 9.95 2.20 -6.47 121.76 321.45 2.65 2.72 2.40 2.55 0.70	-99.05 285.66 -300.90 99.20 2.42 -4.20 202.63 195.36 2.82 2.75 2.78 2.61 0.91	
$ \begin{array}{c} \langle \mathbf{S}_{0}\mathbf{S}_{1} \hat{H} \mathbf{C} \mathbf{A} \rangle \\ \langle \mathbf{S}_{0}\mathbf{S}_{1} \hat{H} \mathbf{A} \mathbf{C} \rangle \\ \langle \mathbf{S}_{1}\mathbf{S}_{0} \hat{H} \mathbf{C} \mathbf{A} \rangle \\ \langle \mathbf{S}_{1}\mathbf{S}_{0} \hat{H} \mathbf{C} \mathbf{A} \rangle \\ \langle \mathbf{S}_{0}\mathbf{S}_{1} \hat{H} \mathbf{T} \mathbf{T} \rangle \\ \langle \mathbf{S}_{1}\mathbf{S}_{0} \hat{H} \mathbf{T} \mathbf{T} \rangle \\ \langle \mathbf{C} \mathbf{A} \hat{H} \mathbf{T} \mathbf{T} \rangle \\ \langle \mathbf{C} \mathbf{A} \hat{H} \mathbf{T} \mathbf{T} \rangle \\ \langle \mathbf{C} \mathbf{A} \hat{H} \mathbf{T} \mathbf{T} \rangle \\ \langle \mathbf{S}_{0}\mathbf{S}_{1} \hat{H} \mathbf{S}_{0}\mathbf{S}_{1} \rangle \\ \langle \mathbf{S}_{1}\mathbf{S}_{0} \hat{H} \mathbf{S}_{1}\mathbf{S}_{0} \rangle \\ \langle \mathbf{C} \mathbf{A} \hat{H} \mathbf{C} \mathbf{A} \rangle \\ \langle \mathbf{C} \mathbf{A} \hat{H} \mathbf{C} \mathbf{A} \rangle \\ \langle \mathbf{A} \mathbf{C} \hat{H} \mathbf{C} \mathbf{A} \rangle \\ \langle \mathbf{C} \mathbf{C} \hat{H} \mathbf{C} \mathbf{C} \rangle \\ \langle \mathbf{T} \mathbf{T} \hat{H} \mathbf{T} \mathbf{T} \rangle \\ V_{\text{eff}} _{10}^{2} \\ (\text{variance}) \\ \tau \\ V_{\text{eff}} _{S}^{2} \\ (\text{variance}) \\ \tau_{S} \\ \hline \end{array} $	-26.10 296.50 -293.22 27.50 -4.83 4.42 -205.33 -199.52 2.72 2.81 2.63 2.70 1.15 71.11 337.29	-20.59 -46.29 27.84 42.39 -2.62 -2.78 -51.05 17.60 2.68 2.91 2.80 2.68 1.11	44.70 260.57 -273.91 -45.54 -1.33 3.91 -154.19 -224.71 2.73 2.93 2.76 2.84 1.16	-17.38 296.25 -309.79 20.39 -1.41 0.15 -291.72 5.65 2.71 2.80 2.63 2.59 0.77 - 94.57 266.95	43.76 181.15 -194.51 -39.33 0.97 -2.06 89.79 184.15 2.74 2.90 2.84 2.92 1.13 9.24×10 ⁻³ (11 1.38×10 ⁻² (7. BPc7 210.87 -257.59	-124.24 336.39 -327.10 119.12 -6.12 3.36 -254.82 -276.63 2.74 2.67 2.54 2.50 0.70 (3.25×10 ⁻⁴) .6 (7.39×10 ⁻⁴) 8 72.04 -172.83	-49.92 232.91 -222.88 62.29 -2.97 4.21 -110.75 -131.56 2.73 2.71 2.63 2.56 0.98	50.90 391.29 -393.64 -43.65 -7.65 3.48 -354.62 -259.19 2.89 2.84 2.80 2.62 1.48	-0.97 300.17 -290.16 9.95 2.20 -6.47 121.76 321.45 2.65 2.72 2.40 2.55 0.70 36.17 403.76	-99.05 285.66 -300.90 99.20 2.42 -4.20 202.63 195.36 2.82 2.75 2.78 2.61 0.91	
$ \begin{array}{c} \langle \mathbf{S}_{0}\mathbf{S}_{1} \widehat{H} \mathbf{C} \mathbf{A} \rangle \\ \langle \mathbf{S}_{0}\mathbf{S}_{1} \widehat{H} \mathbf{A} \mathbf{C} \rangle \\ \langle \mathbf{S}_{1}\mathbf{S}_{0} \widehat{H} \mathbf{C} \mathbf{A} \rangle \\ \langle \mathbf{S}_{1}\mathbf{S}_{0} \widehat{H} \mathbf{C} \mathbf{A} \rangle \\ \langle \mathbf{S}_{0}\mathbf{S}_{1} \widehat{H} \mathbf{T} \mathbf{T} \rangle \\ \langle \mathbf{S}_{1}\mathbf{S}_{0} \widehat{H} \mathbf{T} \mathbf{T} \rangle \\ \langle \mathbf{C} \mathbf{A} \widehat{H} \mathbf{T} \mathbf{T} \rangle \\ \langle \mathbf{C} \mathbf{A} \widehat{H} \mathbf{T} \mathbf{T} \rangle \\ \langle \mathbf{C} \mathbf{A} \widehat{H} \mathbf{S}_{0} \mathbf{S}_{1} \rangle \\ \langle \mathbf{S}_{1}\mathbf{S}_{0} \widehat{H} \mathbf{S}_{0} \mathbf{S}_{1} \rangle \\ \langle \mathbf{S}_{1}\mathbf{S}_{0} \widehat{H} \mathbf{S}_{1} \mathbf{S}_{0} \rangle \\ \langle \mathbf{C} \mathbf{A} \widehat{H} \mathbf{C} \mathbf{A} \rangle \\ \langle \mathbf{A} \mathbf{C} \widehat{H} \mathbf{A} \mathbf{C} \rangle \\ \langle \mathbf{C} \mathbf{A} \widehat{H} \mathbf{C} \mathbf{A} \rangle \\ \langle \mathbf{C} \mathbf{A} \widehat{H} \mathbf{C} \mathbf{A} \rangle \\ \langle \mathbf{C} \mathbf{A} \widehat{H} \mathbf{C} \mathbf{A} \rangle \\ \langle \mathbf{S}_{0} \mathbf{S}_{1} \widehat{H} \mathbf{C} \mathbf{A} \rangle \\ \langle \mathbf{S}_{0} \mathbf{S}_{1} \widehat{H} \mathbf{C} \mathbf{A} \rangle \\ \langle \mathbf{S}_{1} \mathbf{S}_{0} \widehat{H} \mathbf{C} \mathbf{A} \rangle \\ \end{cases} $	-26.10 296.50 -293.22 27.50 -4.83 4.42 -205.33 -199.52 2.72 2.81 2.63 2.70 1.15 71.11 337.29 -353.16	-20.59 -46.29 27.84 42.39 -2.62 -2.78 -51.05 17.60 2.68 2.91 2.80 2.68 1.11 66.04 271.15 -257.18	44.70 260.57 -273.91 -45.54 -1.33 3.91 -154.19 -224.71 2.73 2.93 2.76 2.84 1.16 125.67 79.86 -71.71	-17.38 296.25 -309.79 20.39 -1.41 0.15 -291.72 5.65 2.71 2.80 2.63 2.59 0.77 H -94.57 266.95 -262.67	43.76 181.15 -194.51 -39.33 0.97 -2.06 89.79 184.15 2.74 2.90 2.84 2.92 1.13 9.24×10 ⁻³ (11 1.38×10 ⁻² (7. BPc7 210.87 -257.59 243.19	-124.24 336.39 -327.10 119.12 -6.12 3.36 -254.82 -276.63 2.74 2.67 2.54 2.50 0.70 (3.25×10 ⁻⁴) .6 (7.39×10 ⁻⁴) 8 72.04 -172.83 185.63	-49.92 232.91 -222.88 62.29 -2.97 4.21 -110.75 -131.56 2.73 2.71 2.63 2.56 0.98 112.27 -180.15 199.43	50.90 391.29 -393.64 -43.65 -7.65 3.48 -354.62 -259.19 2.89 2.84 2.80 2.62 1.48 1.48	-0.97 300.17 -290.16 9.95 2.20 -6.47 121.76 321.45 2.65 2.72 2.40 2.55 0.70 36.17 403.76 -374.66	-99.05 285.66 -300.90 99.20 2.42 -4.20 202.63 195.36 2.82 2.75 2.78 2.61 0.91 109.35 60.17 -56.48	
$ \begin{array}{c} \langle \mathbf{S}_0 \mathbf{S}_1 \hat{H} \mathbf{C} \mathbf{A} \rangle \\ \langle \mathbf{S}_0 \mathbf{S}_1 \hat{H} \mathbf{A} \mathbf{C} \rangle \\ \langle \mathbf{S}_1 \mathbf{S}_0 \hat{H} \mathbf{C} \mathbf{A} \rangle \\ \langle \mathbf{S}_1 \mathbf{S}_0 \hat{H} \mathbf{T} \mathbf{T} \rangle \\ \langle \mathbf{S}_1 \mathbf{S}_0 \hat{H} \mathbf{T} \mathbf{T} \rangle \\ \langle \mathbf{C} \mathbf{A} \hat{H} \mathbf{S}_0 \mathbf{S}_1 \rangle \\ \langle \mathbf{S}_1 \mathbf{S}_0 \hat{H} \mathbf{S}_1 \mathbf{S}_0 \rangle \\ \langle \mathbf{C} \mathbf{A} \hat{H} \mathbf{S}_0 \mathbf{S}_1 \rangle \\ \langle \mathbf{C} \mathbf{A} \hat{H} \mathbf{C} \mathbf{A} \rangle \\ \langle \mathbf{C} \mathbf{S}_0 \mathbf{S}_1 \hat{H} \mathbf{C} \mathbf{A} \rangle \\ \langle \mathbf{S}_0 \mathbf{S}_1 \hat{H} \mathbf{C} \mathbf{A} \rangle \\ \langle \mathbf{S}_1 \mathbf{S}_0 \hat{H} \mathbf{C} \mathbf{A} \rangle \\ \langle \mathbf{S}_1 \mathbf{S}_0 \hat{H} \mathbf{A} \mathcal{C} \rangle \\ \end{cases} $	-26.10 296.50 -293.22 27.50 -4.83 4.42 -205.33 -199.52 2.72 2.81 2.63 2.70 1.15 71.11 337.29 -353.16 -72.68	-20.59 -46.29 27.84 42.39 -2.62 -2.78 -51.05 17.60 2.68 2.91 2.80 2.68 1.11 66.04 271.15 -257.18 -42.77	44.70 260.57 -273.91 -45.54 -1.33 3.91 -154.19 -224.71 2.73 2.93 2.76 2.84 1.16 125.67 79.86 -71.71 -127.35	-17.38 296.25 -309.79 20.39 -1.41 0.15 -291.72 5.65 2.71 2.80 2.63 2.59 0.77 F -94.57 266.95 -262.67 112.32	$\begin{array}{r} 43.76\\ 181.15\\ -194.51\\ -39.33\\ 0.97\\ -2.06\\ 89.79\\ 184.15\\ 2.74\\ 2.90\\ 2.84\\ 2.92\\ 1.13\\ 9.24\times10^{-3} (\\ & \\ 11\\ 1.38\times10^{-2} (\\ & \\ \hline & \\ 7.\\ \hline & \\ \textbf{BPc7}\\ \hline \\ 210.87\\ -257.59\\ 243.19\\ -215.81\\ \end{array}$	-124.24 336.39 -327.10 119.12 -6.12 3.36 -254.82 -276.63 2.74 2.67 2.54 2.50 0.70 (3.25×10 ⁻⁴) .6 (7.39×10 ⁻⁴) .8 72.04 -172.83 185.63 -83.33	-49.92 232.91 -222.88 62.29 -2.97 4.21 -110.75 -131.56 2.73 2.71 2.63 2.56 0.98 112.27 -180.15 199.43 -132.51	50.90 391.29 -393.64 -43.65 -7.65 3.48 -354.62 -259.19 2.89 2.84 2.80 2.62 1.48 125.93 -252.93 254.57 -119.65	-0.97 300.17 -290.16 9.95 2.20 -6.47 121.76 321.45 2.65 2.72 2.40 2.55 0.70 36.17 403.76 -374.66 -44.33	-99.05 285.66 -300.90 99.20 2.42 -4.20 202.63 195.36 2.82 2.75 2.78 2.61 0.91 109.35 60.17 -56.48 -104.19	

$\langle S_1 S_0 \hat{H} TT \rangle$	-5.84	-5.80	-0.77	3.88	-1.26	1.62	-3.51	-4.22	-2.91	-1.31		
$\langle CA \hat{H} TT \rangle$	71.28	122.53	-4.82	-331.46	-311.92	116.82	-221.59	-237.57	250.37	46.09		
$\langle AC \hat{H} TT \rangle$	270.90	-65.95	-27.48	-250.16	-268.38	216.07	-77.48	-118.01	212.37	-107.31		
$\langle S_0 S_1 \hat{H} S_0 S_1 \rangle$	2.70	2.93	2.95	2.79	3.00	2.89	3.00	3.05	2.98	2.83		
$\langle S_1 S_0 \hat{H} S_1 S_0 \rangle$	2.95	2.90	3.03	2.80	3.01	3.03	3.02	2.85	3.11	2.88		
$\langle CA \hat{H} CA \rangle$	2.79	2.78	3.30	2.73	3.20	3.08	3.31	3.08	3.22	3.03		
$\langle AC \hat{H} AC \rangle$	2.95	2.91	3.10	2.81	3.25	2.98	3.10	2.96	3.19	3.10		
$\langle TT \hat{H} TT \rangle$	1.63	1.74	2.09	1.38	2.07	1.88	2.11	1.80	2.32	1.71		
$ V_{\rm eff} _{10}^2$					5 79×10 ⁻³	(1.20×10^{-4})						
(variance)		5./9×10° (1.20×10°)										
$ V_{\alpha\beta} _{c}^{2}$					10).4 (* * * * * * * *						
(variance)		8.22×10 ⁻³ (2.28×10 ⁻⁴)										
$ au_S$		13.0										
				E	BPc8							
$\langle S_0 S_1 H CA \rangle$	299.42	290.39	339.61	381.02	1.76	300.92	160.56	336.38	267.92	247.35		
$\langle S_0 S_1 H AC \rangle$	227.82	-28.79	292.80	296.07	269.56	349.73	377.24	-70.12	3/6.0/	344.07		
$\langle S_1 S_0 H CA \rangle$	-230.95	45.22	-310.01	-296.31	-312.63	-309.86	-344.60	79.41	-403.15	-346.57		
$\langle S_1 S_0 H AC \rangle$	-289.72	-300.87	-324.84	-383.52	-0.67	-280.22	-161.97	-340.37	-261.98	-228.46		
$\langle S_0 S_1 H TT \rangle$	-2.89	3.96	1.88	1.16	2.79	-0.68	-0.22	3.88	-7.15	8.82		
$\langle S_1 S_0 H I I \rangle$	0.92	-2.39	1.29	3.51	0.05	-/.64	1.31	1.79	-9.76	-0.07		
(CA H 11)	-//.23	-130.80	68./3 05.46	-15.60	-27.58	90.95	-0.07	-113.39	-9.96	-13.52		
	101.90	-1.01	-95.40	-10.00	108.07	-43.00	37.82	-24.95	2 91	192.52		
$(S_0S_1 H S_0S_1)$	2.74	2.95	2.80	2.75	2.78	2.88	2.90	2.88	2.81	2.00		
$(S_1S_0 \Pi S_1S_0)$	2.04	2.90	2.83	2.70	3.03	2.90	2.90	2.94	3.02	2.07		
$(CA \Pi CA)$	5.04 2.12	5.15 2.10	2.09	2.07	2.05	3.09	5.10 2.12	5.00 2.11	2.90	2.01		
$(AC \Pi AC)$ $(TT \widehat{\Pi} TT)$	2.03	2.02	2.85	2.91	1.83	2.00	2.00	1 01	1.94	2.70		
$ V_{\text{off}} _{10}^2$	2.05	2.02	1.70	1.//	1.05	2.07	2.07	1.71	1.07	1.27		
(variance)					1.03×10 ⁻³ ((2.68×10 ⁻⁶)						
τ					10	3.8						
$ V_{\rm eff} _{S}^{2}$					1.23×10 ⁻³ ((3.50×10 ⁻⁶)						
(variance)					86	5.8						
5				F	3Pc9							
$\langle S_0 S_1 \hat{H} CA \rangle$	346.89	182.98	366.98	318.94	235.88	36.89	309.97	334.25	284.11	288.21		
$\langle S_0 S_1 \hat{H} AC \rangle$	212.58	78.74	-32.32	83.37	-178.20	-263.29	43.52	11.64	-118.03	145.60		
$\langle S_1 S_0 \hat{H} CA \rangle$	-234.27	-81.33	57.04	-79.56	158.80	261.02	-31.79	18.81	148.26	-144.09		
$\langle S_1 S_0 \hat{H} AC \rangle$	-344.41	-180.04	-383.74	-329.88	-246.28	-46.54	-320.10	-332.49	-255.00	-312.33		
$\langle S_0 S_1 \hat{H} TT \rangle$	4.73	-0.19	0.67	-0.66	-1.23	0.73	-6.62	-2.20	-1.79	1.15		
$\langle S_1 S_0 \hat{H} TT \rangle$	-3.62	-1.81	-2.60	-3.14	0.31	-6.10	-5.04	-0.05	3.66	2.05		
$\langle CA \hat{H} TT \rangle$	15.54	-33.07	-108.04	50.59	38.07	-53.06	133.43	-5.62	162.87	-84.11		
$\langle AC \hat{H} TT \rangle$	2.25	-31.22	6.44	-164.72	60.74	-125.12	-103.60	140.59	84.56	32.19		
$\langle S_0 S_1 \hat{H} S_0 S_1 \rangle$	2.80	2.68	2.76	2.79	2.69	2.62	2.78	2.70	2.66	2.86		
$\langle S_1 S_0 \hat{H} S_1 S_0 \rangle$	2.49	2.94	2.83	2.75	2.78	2.63	2.98	2.85	3.01	2.85		
$\langle CA H CA \rangle$	2.83	3.08	2.89	2.99	2.93	2.93	3.07	2.99	2.91	2.98		
$\langle AC H AC \rangle$	2.60	3.11	2.81	2.73	2.93	2.95	3.19	2.82	2.98	3.10		
$\langle T^{T} H T^{T}\rangle$	1.09	1.35	1.21	1.03	1.13	1.09	1.32	1.16	1.38	1.58		
V _{eff} ₁₀ (variance)					7.08×10 ⁻⁴ ((9.54×10 ⁻⁷)						
τ					15	0.9						
$ V_{\rm eff} _S^2$					5 49×10-4	(2 35×10-7)						
(variance)					J. T.	4.0						
$ au_S$					19	4.8						

BPc10											
$\langle S_0 S_1 \hat{H} CA \rangle$	29.33	66.97	-61.75	-53.39	-85.49	-12.81	99.63	50.18	36.15	-11.32	
$\langle S_0 S_1 \hat{H} AC \rangle$	146.42	-85.09	-195.06	-119.10	158.48	-157.34	75.07	-199.74	-101.86	-75.22	
$\langle S_1 S_0 \hat{H} CA \rangle$	-133.59	88.82	185.44	124.71	-143.80	116.95	-82.39	212.57	100.99	67.74	
$\langle S_1 S_0 \hat{H} AC \rangle$	-21.46	-60.88	37.24	76.98	75.24	-2.56	-116.44	-75.84	-76.95	-6.48	
$\langle S_0 S_1 \hat{H} TT \rangle$	5.93	-1.40	2.49	2.98	-6.56	0.84	0.82	-6.19	4.94	2.58	
$\langle S_1 S_0 \hat{H} TT \rangle$	-0.55	1.15	-2.46	-3.20	5.55	1.15	0.61	1.27	-1.52	-2.42	
$\langle CA \hat{H} TT \rangle$	62.05	76.12	25.56	90.64	-157.45	-82.17	16.06	72.33	-178.73	10.00	
$\langle AC \hat{H} TT \rangle$	20.70	83.59	-5.86	-62.79	-140.78	-4.14	0.54	54.61	50.69	-37.56	
$\langle S_0 S_1 \hat{H} S_0 S_1 \rangle$	2.79	3.03	2.87	2.85	2.59	2.97	2.93	2.84	2.85	2.94	
$\langle S_1 S_0 \hat{H} S_1 S_0 \rangle$	3.15	2.76	3.16	2.79	2.84	2.63	2.78	3.26	2.95	2.95	
$\langle CA \hat{H} CA\rangle$	3.05	3.04	3.13	2.93	2.88	3.07	3.11	3.15	3.23	3.24	
$\langle AC \hat{H} AC \rangle$	3.22	3.17	2.97	2.78	2.80	3.11	3.09	3.29	2.96	3.10	
$\langle TT \hat{H} TT \rangle$	2.10	1.79	2.05	1.68	1.45	1.57	1.66	2.31	2.07	2.20	
$ V_{eff} _{10}^2$					1 71.104	(0.77.10.8)					
(variance)					1./1×10 ⁻⁴	(9.//×10 ⁻ °)					
τ					62	4.9					
$ V_{\rm eff} _S^2$					3.98×10 ⁻⁵	(1.42×10^{-9})					
(variance)					0.00	(
$ au_S$				n	268 De11	38.2					
$\frac{1}{10000000000000000000000000000000000$	24.22	55.05	152 52	117.55	04 45	20.15	71.14	157.04	70.02	52.00	
$\langle S_0 S_1 H CA \rangle$	34.22 44.02	55.95 7 21	155.55	117.55	84.45	20.15	-/1.14	157.04	/9.03	52.88 124.71	
$\langle S_0 S_1 H A C \rangle$	-44.05	-/.51	-224.02	-25/.58	-181.42	190.07	-33.91	-122.01	-101.08	-124./1	
$\langle S_1 S_0 H CA \rangle$	30.08	21.95	214.90	248.11	1/7.05	-1/0.39	5.48 49.54	144.07	181.92	144.79	
$\langle S_1 S_0 H A C \rangle$	-48.08	-54.40	-131.03	-110.99	-/5.5/	9.22	48.54	-149.85	-80.47	-30.09	
$\langle S_0 S_1 H I I \rangle$	0.13	-1.04	1.55	0.49	-1.30	8.84	2.41	-1.84	0.38	-1.4/	
$\langle S_1 S_0 H I I \rangle$	-2.20	3.6/	-2.14	1.41	2.82	-3.21	5.43	3.25 1.49.72	-1.49	3.20 19.70	
(CA H II)	-22.91	14.88	-121.59	131.97	/1.39	100.08	-03.33	148.75	-/1.80	-18.79	
(AC H 11)	15.01	22.55	-220.44	144.01	//.45	35.50	-49.93	1/4.90	-100.81	2.04	
$(\mathfrak{z}_0\mathfrak{z}_1 \mathfrak{h} \mathfrak{z}_0\mathfrak{z}_1)$	2.87	2.82	2.92	2.95	3.11	2.98	2.89	2.91	2.75	2.84	
$(3_1 3_0 \pi 3_1 3_0)$	2.07	2.80	2.05	2.00	2.00	2.94	2.91	2.99	2.77	2.00	
(CA H CA)	3.11	2.92	5.20 2.15	5.20 2.00	3.21	3.10	3.02	5.17 2.17	2.92	2.91	
(AC H AC)	5.05	2.94	3.15	2.99	3.00	5.02	3.03	3.17	2.90	5.00 1.71	
(11 H 11)	1.75	1.57	2.00	1.98	2.02	1.92	1.94	1.99	1.20	1./1	
(variance)					3.33×10 ⁻⁴	(2.66×10 ⁻⁷)					
τ					32	0.9					
$ V_{\rm eff} _{\rm S}^2$					4.07×10-4	(2 4(~10-7)					
(variance)					4.0/×10 *	(2.46×107)					
$ au_S$					26	2.9					
				B	Pc12						
$\langle S_0 S_1 H CA \rangle$	320.48	144.98	331.49	283.57	350.94	283.73	120.80	292.14	364.64	213.92	
$\langle S_0 S_1 H AC \rangle$	219.00	366.30	270.06	175.41	176.26	274.20	233.01	271.46	282.81	302.36	
$\langle S_1 S_0 H CA \rangle$	-209.51	-357.12	-289.71	-137.60	-191.98	-272.28	-260.42	-301.57	-229.86	-312.05	
$\langle S_1 S_0 H AC \rangle$	-316.11	-141.81	-333.90	-283.45	-371.18	-297.63	-136.70	-325.39	-323.84	-193.24	
$\langle S_0 S_1 H TT \rangle$	3.10	-1.12	-0.53	2.76	1.17	-1.51	3.54	1.83	4.82	1.74	
$\langle S_1 S_0 H TT \rangle$	-0.29	-2.63	2.08	7.33	1.87	4.83	-1.26	0.02	3.01	1.41	
$\langle CA H TT \rangle$	-62.98	54.40	17.72	17.45	-96.95	-73.20	-6.67	20.30	17.37	40.19	
$\langle AC H TT \rangle$	-32.18	-85.80	-48.11	-44.65	54.23	120.66	43.95	-125.08	51.68	-75.06	
$\langle S_0 S_1 H S_0 S_1 \rangle$	2.94	2.78	2.81	3.06	2.88	2.92	2.93	2.71	2.88	2.90	
$\langle S_1 S_0 \hat{H} S_1 S_0 \rangle$	2.97	3.03	2.90	2.93	2.80	2.98	2.89	3.02	2.83	2.90	
$\langle CA \hat{H} CA \rangle$	3.00	3.00	2.92	3.19	2.87	3.20	3.19	2.86	2.87	3.04	
$\langle AC \hat{H} AC \rangle$	3.16	3.03	2.91	3.17	3.03	3.05	2.98	3.14	3.11	2.99	

$\langle TT \hat{H} TT \rangle$	2.04	1.97	1.67	2.20	1.72	2.10	1.97	1.91	1.96	1.86	
$ V_{\rm eff} _{10}^2$ (variance)					9.14×10 ⁻⁴ (1.11×10 ⁻⁶)					
τ					110	5.9					
$ V_{\rm eff} _{S}^{2}$	1.08×10 ⁻³ (1.31×10 ⁻⁶)										
(variance) τ_{z}	99.4										
				В	Pc13						
$\langle S_0 S_1 \hat{H} CA \rangle$	422.43	-240.95	347.12	-351.85	-80.78	4.21	-163.07	-345.87	126.85	271.88	
$\langle S_0 S_1 \hat{H} AC \rangle$	367.84	-378.75	388.22	-454.40	-283.76	-94.90	-306.14	-295.13	72.18	260.91	
$\langle S_1 S_0 \hat{H} CA \rangle$	-367.35	377.73	-377.41	475.34	262.13	88.80	324.33	280.60	-78.23	-266.75	
$\langle S_1 S_0 \hat{H} AC \rangle$	-424.75	250.13	-336.08	346.78	82.90	-13.29	170.46	320.60	-134.43	-249.32	
$\langle S_0 S_1 \hat{H} TT \rangle$	-0.12	-4.04	2.84	-4.53	4.41	-6.47	-0.02	0.70	6.29	-1.57	
$\langle S_1 S_0 \hat{H} TT \rangle$	0.88	-3.04	5.98	-7.87	-2.68	4.11	-7.23	-0.71	-4.30	8.49	
$\langle CA \hat{H} TT \rangle$	132.66	-107.90	-386.23	-143.03	9.74	-31.60	-277.23	-110.89	-343.88	-67.61	
$\langle AC \hat{H} TT \rangle$	-248.36	86.43	264.66	116.87	-149.18	91.71	292.47	81.36	263.53	223.10	
$\langle S_0 S_1 H S_0 S_1 \rangle$	2.79	2.95	2.95	2.87	3.06	2.91	3.10	2.89	2.78	2.85	
$\langle S_1 S_0 H S_1 S_0 \rangle$	3.04	2.84	2.97	2.89	2.96	2.92	2.93	2.73	2.92	3.04	
$\langle CA H CA \rangle$	2.66	2.77	2.76	2.74	2.84	2.74	2.90	2.88	2.64	2.59	
$\langle AC H AC \rangle$	2.57	2.74	2.79	2.66	2.92	2.74	2.85	2.65	2.67	2.88	
$\langle T^{*}T H T^{*}T\rangle$	1.91	1.78	2.04	1.55	2.04	1.81	2.13	1.56	1.80	1.85	
V _{eff} ₁₀ (variance)	1.68×10 ⁻² (1.27×10 ⁻³)										
τ					6.	4					
$ V_{\rm eff} _{S}^{2}$					6.40×10 ⁻³ (7.90×10 ⁻⁵)					
(variance)	16.7										
				В	Pc14	• /					
$\langle S_0 S_1 \hat{H} CA \rangle$	-92.39	-80.45	22.75	-206.98	-227.74	-154.33	-112.21	-141.53	-109.48	-117.63	
		201111	442 11	138.81	121 12	274 20	324 52	221.82	168.46	272 70	
$\langle S_0 S_1 H AC \rangle$	265.33	206.66	442.11	150.01	121.12	2/4.28	527.52	221.02	100.40	2/2./0	
$\langle S_0 S_1 H AC \rangle$ $\langle S_1 S_0 \hat{H} CA \rangle$	265.33 -254.84	206.66 -213.66	-442.11 -446.17	-131.51	-110.13	-281.35	-298.06	-234.42	-186.38	-273.81	
$ \langle S_0 S_1 H AC \rangle \langle S_1 S_0 \hat{H} CA \rangle \langle S_1 S_0 \hat{H} AC \rangle $	265.33 -254.84 99.61	206.66 -213.66 61.26	-446.17 -37.24	-131.51 213.99	-110.13 250.62	-281.35 158.78	-298.06 136.46	-234.42 111.98	-186.38 108.70	-273.81 129.00	
	265.33 -254.84 99.61 -6.33	206.66 -213.66 61.26 3.19	-446.17 -37.24 1.27	-131.51 213.99 -1.36	-110.13 250.62 -2.93	-281.35 158.78 1.49	-298.06 136.46 -2.71	-234.42 111.98 3.08	-186.38 108.70 3.64	-273.81 129.00 -1.11	
$ \langle S_0 S_1 \hat{H} AC \rangle \langle S_1 S_0 \hat{H} CA \rangle \langle S_1 S_0 \hat{H} AC \rangle \langle S_0 S_1 \hat{H} TT \rangle \langle S_1 S_0 \hat{H} TT \rangle $	265.33 -254.84 99.61 -6.33 2.12	206.66 -213.66 61.26 3.19 -1.93	-442.11 -446.17 -37.24 1.27 1.72	-131.51 213.99 -1.36 1.09	-110.13 250.62 -2.93 1.86	-281.35 -281.35 158.78 1.49 -5.70	-298.06 136.46 -2.71 3.52	-234.42 111.98 3.08 -6.05	-186.38 108.70 3.64 -3.93	-273.81 129.00 -1.11 3.18	
$\langle S_0 S_1 \hat{H} AC \rangle$ $\langle S_1 S_0 \hat{H} CA \rangle$ $\langle S_1 S_0 \hat{H} AC \rangle$ $\langle S_0 S_1 \hat{H} TT \rangle$ $\langle S_1 S_0 \hat{H} TT \rangle$ $\langle CA \hat{H} TT \rangle$	265.33 -254.84 99.61 -6.33 2.12 -145.11	206.66 -213.66 61.26 3.19 -1.93 147.04	-442.11 -446.17 -37.24 1.27 1.72 55.29	-131.51 213.99 -1.36 1.09 -196.68	-110.13 250.62 -2.93 1.86 -158.01	-281.35 158.78 1.49 -5.70 0.23	-298.06 136.46 -2.71 3.52 99.53	-234.42 111.98 3.08 -6.05 55.38	-186.38 108.70 3.64 -3.93 136.45	-273.81 129.00 -1.11 3.18 66.62	
$\langle S_0 S_1 H AC \rangle$ $\langle S_1 S_0 \hat{H} CA \rangle$ $\langle S_1 S_0 \hat{H} AC \rangle$ $\langle S_0 S_1 \hat{H} TT \rangle$ $\langle S_1 S_0 \hat{H} TT \rangle$ $\langle CA \hat{H} TT \rangle$	265.33 -254.84 99.61 -6.33 2.12 -145.11 98.17	206.66 -213.66 61.26 3.19 -1.93 147.04 -87.94	-442.11 -446.17 -37.24 1.27 1.72 55.29 -44.35	-131.51 213.99 -1.36 1.09 -196.68 75.40	-110.13 250.62 -2.93 1.86 -158.01 -82.67	274.28 -281.35 158.78 1.49 -5.70 0.23 78.91	-298.06 136.46 -2.71 3.52 99.53 -105.85	-234.42 111.98 3.08 -6.05 55.38 103.79	-186.38 108.70 3.64 -3.93 136.45 -73.07	-273.81 129.00 -1.11 3.18 66.62 -85.01	
$\langle S_0 S_1 \hat{H} AC \rangle$ $\langle S_1 S_0 \hat{H} CA \rangle$ $\langle S_0 S_1 \hat{H} TT \rangle$ $\langle S_1 S_0 \hat{H} TT \rangle$ $\langle CA \hat{H} TT \rangle$ $\langle AC \hat{H} TT \rangle$ $\langle S_0 S_1 \hat{H} S_0 S_1 \rangle$	265.33 -254.84 99.61 -6.33 2.12 -145.11 98.17 2.91	206.66 -213.66 61.26 3.19 -1.93 147.04 -87.94 2.80	-442.11 -446.17 -37.24 1.27 1.72 55.29 -44.35 3.13	-131.51 213.99 -1.36 1.09 -196.68 75.40 2.85	-110.13 250.62 -2.93 1.86 -158.01 -82.67 2.90	-274.28 -281.35 158.78 1.49 -5.70 0.23 78.91 3.14	-298.06 136.46 -2.71 3.52 99.53 -105.85 3.46	-234.42 111.98 3.08 -6.05 55.38 103.79 2.93	-186.38 108.70 3.64 -3.93 136.45 -73.07 2.80	-273.81 129.00 -1.11 3.18 66.62 -85.01 3.18	
$\langle S_0 S_1 \hat{H} AC \rangle$ $\langle S_1 S_0 \hat{H} CA \rangle$ $\langle S_1 S_0 \hat{H} AC \rangle$ $\langle S_0 S_1 \hat{H} TT \rangle$ $\langle S_1 S_0 \hat{H} TT \rangle$ $\langle CA \hat{H} TT \rangle$ $\langle AC \hat{H} TT \rangle$ $\langle S_0 S_1 \hat{H} S_0 S_1 \rangle$ $\langle S_1 S_0 \hat{H} S_1 S_0 \rangle$	265.33 -254.84 99.61 -6.33 2.12 -145.11 98.17 2.91 3.11	206.66 -213.66 61.26 3.19 -1.93 147.04 -87.94 2.80 3.37	442.11 -446.17 -37.24 1.27 1.72 55.29 -44.35 3.13 2.94	-131.51 213.99 -1.36 1.09 -196.68 75.40 2.85 3.03	-110.13 250.62 -2.93 1.86 -158.01 -82.67 2.90 3.21	-281.35 158.78 1.49 -5.70 0.23 78.91 3.14 3.04	-298.06 136.46 -2.71 3.52 99.53 -105.85 3.46 2.79	-234.42 111.98 3.08 -6.05 55.38 103.79 2.93 3.07	-186.38 108.70 3.64 -3.93 136.45 -73.07 2.80 3.16	-273.81 129.00 -1.11 3.18 66.62 -85.01 3.18 2.89	
$\langle S_0 S_1 \hat{H} AC \rangle$ $\langle S_1 S_0 \hat{H} CA \rangle$ $\langle S_1 S_0 \hat{H} AC \rangle$ $\langle S_0 S_1 \hat{H} TT \rangle$ $\langle S_1 S_0 \hat{H} TT \rangle$ $\langle CA \hat{H} TT \rangle$ $\langle AC \hat{H} TT \rangle$ $\langle S_0 S_1 \hat{H} S_0 S_1 \rangle$ $\langle S_1 S_0 \hat{H} S_1 S_0 \rangle$ $\langle CA \hat{H} CA \rangle$	265.33 -254.84 99.61 -6.33 2.12 -145.11 98.17 2.91 3.11 3.04	206.66 -213.66 61.26 3.19 -1.93 147.04 -87.94 2.80 3.37 3.15	442.11 -446.17 -37.24 1.27 1.72 55.29 -44.35 3.13 2.94 3.03	-131.51 213.99 -1.36 1.09 -196.68 75.40 2.85 3.03 2.88	-110.13 250.62 -2.93 1.86 -158.01 -82.67 2.90 3.21 3.10	274.28 -281.35 158.78 1.49 -5.70 0.23 78.91 3.14 3.04 3.05	-298.06 136.46 -2.71 3.52 99.53 -105.85 3.46 2.79 3.18	-234.42 111.98 3.08 -6.05 55.38 103.79 2.93 3.07 2.97	-186.38 108.70 3.64 -3.93 136.45 -73.07 2.80 3.16 3.11	-273.81 129.00 -1.11 3.18 66.62 -85.01 3.18 2.89 3.02	
$\langle S_0 S_1 \hat{H} AC \rangle$ $\langle S_1 S_0 \hat{H} CA \rangle$ $\langle S_0 S_1 \hat{H} TT \rangle$ $\langle S_1 S_0 \hat{H} TT \rangle$ $\langle CA \hat{H} TT \rangle$ $\langle AC \hat{H} TT \rangle$ $\langle S_0 S_1 \hat{H} S_0 S_1 \rangle$ $\langle S_1 S_0 \hat{H} S_1 S_0 \rangle$ $\langle CA \hat{H} CA \rangle$ $\langle AC \hat{H} AC \rangle$	265.33 -254.84 99.61 -6.33 2.12 -145.11 98.17 2.91 3.11 3.04 2.98	206.66 -213.66 61.26 3.19 -1.93 147.04 -87.94 2.80 3.37 3.15 3.16	442.11 -446.17 -37.24 1.27 1.72 55.29 -44.35 3.13 2.94 3.03 3.00	-131.51 213.99 -1.36 1.09 -196.68 75.40 2.85 3.03 2.88 2.86 2.86	-110.13 250.62 -2.93 1.86 -158.01 -82.67 2.90 3.21 3.10 3.00	274.28 -281.35 158.78 1.49 -5.70 0.23 78.91 3.14 3.04 3.05 3.22	-298.06 136.46 -2.71 3.52 99.53 -105.85 3.46 2.79 3.18 3.15	-234.42 111.98 3.08 -6.05 55.38 103.79 2.93 3.07 2.97 3.21	-186.38 108.70 3.64 -3.93 136.45 -73.07 2.80 3.16 3.11 3.01	-273.81 129.00 -1.11 3.18 66.62 -85.01 3.18 2.89 3.02 2.97	
$\langle S_0 S_1 H AC \rangle$ $\langle S_1 S_0 \hat{H} CA \rangle$ $\langle S_0 S_1 \hat{H} AC \rangle$ $\langle S_0 S_1 \hat{H} TT \rangle$ $\langle CA \hat{H} TT \rangle$ $\langle AC \hat{H} TT \rangle$ $\langle S_0 S_1 \hat{H} S_0 S_1 \rangle$ $\langle S_1 S_0 \hat{H} S_1 S_0 \rangle$ $\langle CA \hat{H} CA \rangle$ $\langle AC \hat{H} AC \rangle$ $\langle TT \hat{H} TT \rangle$	265.33 -254.84 99.61 -6.33 2.12 -145.11 98.17 2.91 3.11 3.04 2.98 1.93	206.66 -213.66 61.26 3.19 -1.93 147.04 -87.94 2.80 3.37 3.15 3.16 2.18	442.11 -446.17 -37.24 1.27 1.72 55.29 -44.35 3.13 2.94 3.03 3.00 2.19	-131.51 213.99 -1.36 1.09 -196.68 75.40 2.85 3.03 2.88 2.86 1.83	-110.13 250.62 -2.93 1.86 -158.01 -82.67 2.90 3.21 3.10 3.00 2.11	274.28 -281.35 158.78 1.49 -5.70 0.23 78.91 3.14 3.04 3.05 3.22 2.24	-298.06 136.46 -2.71 3.52 99.53 -105.85 3.46 2.79 3.18 3.15 2.25	-234.42 111.98 3.08 -6.05 55.38 103.79 2.93 3.07 2.97 3.21 2.00	-186.38 108.70 3.64 -3.93 136.45 -73.07 2.80 3.16 3.11 3.01 1.95	-273.81 129.00 -1.11 3.18 66.62 -85.01 3.18 2.89 3.02 2.97 2.02	
$\langle S_0 S_1 \hat{H} AC \rangle$ $\langle S_1 S_0 \hat{H} CA \rangle$ $\langle S_1 S_0 \hat{H} AC \rangle$ $\langle S_0 S_1 \hat{H} TT \rangle$ $\langle CA \hat{H} TT \rangle$ $\langle AC \hat{H} TT \rangle$ $\langle S_0 S_1 \hat{H} S_0 S_1 \rangle$ $\langle S_1 S_0 \hat{H} S_1 S_0 \rangle$ $\langle CA \hat{H} CA \rangle$ $\langle AC \hat{H} AC \rangle$ $\langle TT \hat{H} TT \rangle$ $ V_{eff} _{10}^2$ (variance)	265.33 -254.84 99.61 -6.33 2.12 -145.11 98.17 2.91 3.11 3.04 2.98 1.93	206.66 -213.66 61.26 3.19 -1.93 147.04 -87.94 2.80 3.37 3.15 3.16 2.18	442.11 -446.17 -37.24 1.27 1.72 55.29 -44.35 3.13 2.94 3.03 3.00 2.19	-131.51 213.99 -1.36 1.09 -196.68 75.40 2.85 3.03 2.88 2.86 1.83	-110.13 250.62 -2.93 1.86 -158.01 -82.67 2.90 3.21 3.10 3.00 2.11 4.88×10 ⁻³ (-274.28 -281.35 158.78 1.49 -5.70 0.23 78.91 3.14 3.04 3.05 3.22 2.24 2.30×10 ⁻⁵)	-298.06 136.46 -2.71 3.52 99.53 -105.85 3.46 2.79 3.18 3.15 2.25	-234.42 111.98 3.08 -6.05 55.38 103.79 2.93 3.07 2.97 3.21 2.00	-186.38 108.70 3.64 -3.93 136.45 -73.07 2.80 3.16 3.11 3.01 1.95	-273.81 129.00 -1.11 3.18 66.62 -85.01 3.18 2.89 3.02 2.97 2.02	
$\langle S_0 S_1 \hat{H} AC \rangle$ $\langle S_1 S_0 \hat{H} AC \rangle$ $\langle S_1 S_0 \hat{H} AC \rangle$ $\langle S_0 S_1 \hat{H} TT \rangle$ $\langle S_1 S_0 \hat{H} TT \rangle$ $\langle CA \hat{H} TT \rangle$ $\langle AC \hat{H} TT \rangle$ $\langle AC \hat{H} S_0 S_1 \rangle$ $\langle S_1 S_0 \hat{H} S_1 S_0 \rangle$ $\langle CA \hat{H} CA \rangle$ $\langle AC \hat{H} AC \rangle$ $\langle TT \hat{H} TT \rangle$ $ V_{eff} _{10}^2$ $(variance)$ τ	265.33 -254.84 99.61 -6.33 2.12 -145.11 98.17 2.91 3.11 3.04 2.98 1.93	206.66 -213.66 61.26 3.19 -1.93 147.04 -87.94 2.80 3.37 3.15 3.16 2.18	442.11 -446.17 -37.24 1.27 1.72 55.29 -44.35 3.13 2.94 3.03 3.00 2.19	-131.51 213.99 -1.36 1.09 -196.68 75.40 2.85 3.03 2.88 2.86 1.83	-110.13 250.62 -2.93 1.86 -158.01 -82.67 2.90 3.21 3.10 3.00 2.11 4.88×10 ⁻³ (21	274.28 -281.35 158.78 1.49 -5.70 0.23 78.91 3.14 3.04 3.05 3.22 2.24 2.30×10 ⁻⁵) .9	-298.06 136.46 -2.71 3.52 99.53 -105.85 3.46 2.79 3.18 3.15 2.25	-234.42 111.98 3.08 -6.05 55.38 103.79 2.93 3.07 2.97 3.21 2.00	-186.38 108.70 3.64 -3.93 136.45 -73.07 2.80 3.16 3.11 3.01 1.95	-273.81 129.00 -1.11 3.18 66.62 -85.01 3.18 2.89 3.02 2.97 2.02	
$\langle S_0 S_1 H AC \rangle$ $\langle S_1 S_0 \hat{H} CA \rangle$ $\langle S_1 S_0 \hat{H} AC \rangle$ $\langle S_1 S_0 \hat{H} TT \rangle$ $\langle CA \hat{H} TT \rangle$ $\langle AC \hat{H} TT \rangle$ $\langle S_0 S_1 \hat{H} S_0 S_1 \rangle$ $\langle S_1 S_0 \hat{H} S_1 S_0 \rangle$ $\langle CA \hat{H} CA \rangle$ $\langle AC \hat{H} AC \rangle$ $\langle TT \hat{H} TT \rangle$ $ V_{eff} _{10}^2$ (variance) τ $ V_{eff} _{2}^2$ (variance)	265.33 -254.84 99.61 -6.33 2.12 -145.11 98.17 2.91 3.11 3.04 2.98 1.93	206.66 -213.66 61.26 3.19 -1.93 147.04 -87.94 2.80 3.37 3.15 3.16 2.18	442.11 -446.17 -37.24 1.27 1.72 55.29 -44.35 3.13 2.94 3.03 3.00 2.19	-131.51 213.99 -1.36 1.09 -196.68 75.40 2.85 3.03 2.88 2.86 1.83	-110.13 250.62 -2.93 1.86 -158.01 -82.67 2.90 3.21 3.10 3.00 2.11 4.88×10 ⁻³ (21 8.12×10 ⁻⁴ (274.28 -281.35 158.78 1.49 -5.70 0.23 78.91 3.14 3.04 3.05 3.22 2.24 2.30×10 ⁻⁵) .9 5.90×10 ⁻⁷)	-298.06 136.46 -2.71 3.52 99.53 -105.85 3.46 2.79 3.18 3.15 2.25	-234.42 111.98 3.08 -6.05 55.38 103.79 2.93 3.07 2.97 3.21 2.00	-186.38 108.70 3.64 -3.93 136.45 -73.07 2.80 3.16 3.11 3.01 1.95	-273.81 129.00 -1.11 3.18 66.62 -85.01 3.18 2.89 3.02 2.97 2.02	
$\langle S_0 S_1 H AC \rangle$ $\langle S_1 S_0 \hat{H} AC \rangle$ $\langle S_1 S_0 \hat{H} AC \rangle$ $\langle S_0 S_1 \hat{H} TT \rangle$ $\langle S_1 S_0 \hat{H} TT \rangle$ $\langle CA \hat{H} TT \rangle$ $\langle AC \hat{H} TT \rangle$ $\langle AC \hat{H} S_0 S_1 \rangle$ $\langle S_1 S_0 \hat{H} S_0 S_1 \rangle$ $\langle CA \hat{H} CA \rangle$ $\langle AC \hat{H} CA \rangle$ $\langle AC \hat{H} AC \rangle$ $\langle TT \hat{H} TT \rangle$ $ V_{eff} _{10}^2$ $(variance)$ τ $ V_{eff} _{2}^2$ $(variance)$ τ_S	265.33 -254.84 99.61 -6.33 2.12 -145.11 98.17 2.91 3.11 3.04 2.98 1.93	206.66 -213.66 61.26 3.19 -1.93 147.04 -87.94 2.80 3.37 3.15 3.16 2.18	442.11 -446.17 -37.24 1.27 1.72 55.29 -44.35 3.13 2.94 3.03 3.00 2.19	-131.51 213.99 -1.36 1.09 -196.68 75.40 2.85 3.03 2.88 2.86 1.83	-110.13 250.62 -2.93 1.86 -158.01 -82.67 2.90 3.21 3.10 3.00 2.11 4.88×10 ⁻³ (21 8.12×10 ⁻⁴ (13	274.28 -281.35 158.78 1.49 -5.70 0.23 78.91 3.14 3.04 3.05 3.22 2.24 2.30×10 ⁻⁵) .9 5.90×10 ⁻⁷)	-298.06 136.46 -2.71 3.52 99.53 -105.85 3.46 2.79 3.18 3.15 2.25	-234.42 111.98 3.08 -6.05 55.38 103.79 2.93 3.07 2.97 3.21 2.00	-186.38 108.70 3.64 -3.93 136.45 -73.07 2.80 3.16 3.11 3.01 1.95	-273.81 129.00 -1.11 3.18 66.62 -85.01 3.18 2.89 3.02 2.97 2.02	
$\langle S_0 S_1 H AC \rangle$ $\langle S_1 S_0 \hat{H} AC \rangle$ $\langle S_1 S_0 \hat{H} AC \rangle$ $\langle S_0 S_1 \hat{H} TT \rangle$ $\langle S_1 S_0 \hat{H} TT \rangle$ $\langle CA \hat{H} TT \rangle$ $\langle AC \hat{H} TT \rangle$ $\langle S_0 S_1 \hat{H} S_0 S_1 \rangle$ $\langle S_1 S_0 \hat{H} S_1 S_0 \rangle$ $\langle CA \hat{H} CA \rangle$ $\langle AC \hat{H} AC \rangle$ $\langle TT \hat{H} TT \rangle$ $ V_{eff} _{10}^2$ $(variance)$ τ $ V_{eff} _{S}^2$ $(variance)$ τ_S	265.33 -254.84 99.61 -6.33 2.12 -145.11 98.17 2.91 3.11 3.04 2.98 1.93	206.66 -213.66 61.26 3.19 -1.93 147.04 -87.94 2.80 3.37 3.15 3.16 2.18	442.11 -446.17 -37.24 1.27 1.72 55.29 -44.35 3.13 2.94 3.03 3.00 2.19	-131.51 213.99 -1.36 1.09 -196.68 75.40 2.85 3.03 2.88 2.86 1.83	-110.13 250.62 -2.93 1.86 -158.01 -82.67 2.90 3.21 3.10 3.00 2.11 4.88×10 ⁻³ (21 8.12×10 ⁻⁴ (13 Pc15	274.28 -281.35 158.78 1.49 -5.70 0.23 78.91 3.14 3.04 3.05 3.22 2.24 2.30×10 ⁻⁵) .9 5.90×10 ⁻⁷)	-298.06 136.46 -2.71 3.52 99.53 -105.85 3.46 2.79 3.18 3.15 2.25	-234.42 111.98 3.08 -6.05 55.38 103.79 2.93 3.07 2.97 3.21 2.00	-186.38 108.70 3.64 -3.93 136.45 -73.07 2.80 3.16 3.11 3.01 1.95	-273.81 129.00 -1.11 3.18 66.62 -85.01 3.18 2.89 3.02 2.97 2.02	
$\langle S_0 S_1 \hat{H} AC \rangle$ $\langle S_1 S_0 \hat{H} AC \rangle$ $\langle S_1 S_0 \hat{H} AC \rangle$ $\langle S_1 S_0 \hat{H} TT \rangle$ $\langle S_1 S_0 \hat{H} TT \rangle$ $\langle AC \hat{H} TT \rangle$ $\langle AC \hat{H} TT \rangle$ $\langle S_0 S_1 \hat{H} S_0 S_1 \rangle$ $\langle CA \hat{H} S_1 S_0 \rangle$ $\langle CA \hat{H} CA \rangle$ $\langle AC \hat{H} AC \rangle$ $\langle TT \hat{H} TT \rangle$ $ V_{eff} _{10}^2$ $(variance)$ τ $ V_{eff} _{2S}^2$ $(variance)$ τ $\langle S_0 S_1 \hat{H} CA \rangle$	265.33 -254.84 99.61 -6.33 2.12 -145.11 98.17 2.91 3.11 3.04 2.98 1.93	206.66 -213.66 61.26 3.19 -1.93 147.04 -87.94 2.80 3.37 3.15 3.16 2.18 -16.71	-442.11 -446.17 -37.24 1.27 1.72 55.29 -44.35 3.13 2.94 3.03 3.00 2.19	-131.51 213.99 -1.36 1.09 -196.68 75.40 2.85 3.03 2.88 2.86 1.83 B -248.95	-110.13 250.62 -2.93 1.86 -158.01 -82.67 2.90 3.21 3.10 3.00 2.11 4.88×10 ⁻³ (21 8.12×10 ⁻⁴ (13 Pc15	-274.28 -281.35 158.78 1.49 -5.70 0.23 78.91 3.14 3.04 3.05 3.22 2.24 2.30×10 ⁻⁵) .9 5.90×10 ⁻⁷) 1.7	-298.06 136.46 -2.71 3.52 99.53 -105.85 3.46 2.79 3.18 3.15 2.25	-234.42 111.98 3.08 -6.05 55.38 103.79 2.93 3.07 2.97 3.21 2.00 190.66	-186.38 108.70 3.64 -3.93 136.45 -73.07 2.80 3.16 3.11 3.01 1.95	-273.81 129.00 -1.11 3.18 66.62 -85.01 3.18 2.89 3.02 2.97 2.02	
$\langle S_0 S_1 \hat{H} AC \rangle$ $\langle S_1 S_0 \hat{H} AC \rangle$ $\langle S_1 S_0 \hat{H} AC \rangle$ $\langle S_0 S_1 \hat{H} TT \rangle$ $\langle S_1 S_0 \hat{H} TT \rangle$ $\langle CA \hat{H} TT \rangle$ $\langle AC \hat{H} TT \rangle$ $\langle AC \hat{H} S_0 S_1 \rangle$ $\langle S_1 S_0 \hat{H} S_0 S_1 \rangle$ $\langle CA \hat{H} CA \rangle$ $\langle AC \hat{H} AC \rangle$ $\langle TT \hat{H} TT \rangle$ $ V_{eff} _{10}^2$ $(variance)$ τ $V_{eff} _{2}^2$ $(variance)$ τ_S $\langle S_0 S_1 \hat{H} CA \rangle$ $\langle S_0 S_1 \hat{H} AC \rangle$ $\langle S_0 S_1 \hat{H} AC \rangle$	265.33 -254.84 99.61 -6.33 2.12 -145.11 98.17 2.91 3.11 3.04 2.98 1.93 -306.69 -100.74	206.66 -213.66 61.26 3.19 -1.93 147.04 -87.94 2.80 3.37 3.15 3.16 2.18 -16.71 350.43	-442.11 -446.17 -37.24 1.27 1.72 55.29 -44.35 3.13 2.94 3.03 3.00 2.19 -242.55 80.76	-131.51 213.99 -1.36 1.09 -196.68 75.40 2.85 3.03 2.88 2.86 1.83 2.86 1.83 B -248.95 97.68	$\begin{array}{c} -110.13\\ -110.13\\ 250.62\\ -2.93\\ 1.86\\ -158.01\\ -82.67\\ 2.90\\ 3.21\\ 3.10\\ 3.00\\ 2.11\\ 4.88 \times 10^{-3} (\\ 21\\ 8.12 \times 10^{-4} (\\ \\ 13\\ \hline \textbf{Pc15}\\ -20.79\\ 333.41\\ \hline \end{array}$	274.28 -281.35 158.78 1.49 -5.70 0.23 78.91 3.14 3.04 3.05 3.22 2.24 2.30×10 ⁻⁵) .9 5.90×10 ⁻⁷) 1.7 -292.27 5.74	-298.06 136.46 -2.71 3.52 99.53 -105.85 3.46 2.79 3.18 3.15 2.25 -295.87 -365.07	-234.42 111.98 3.08 -6.05 55.38 103.79 2.93 3.07 2.97 3.21 2.00 190.66 415.09	-186.38 108.70 3.64 -3.93 136.45 -73.07 2.80 3.16 3.11 3.01 1.95 -211.29 159.52	-273.81 129.00 -1.11 3.18 66.62 -85.01 3.18 2.89 3.02 2.97 2.02	
$\langle S_0 S_1 \hat{H} AC \rangle$ $\langle S_1 S_0 \hat{H} AC \rangle$ $\langle S_1 S_0 \hat{H} AC \rangle$ $\langle S_1 S_0 \hat{H} TT \rangle$ $\langle S_1 S_0 \hat{H} TT \rangle$ $\langle CA \hat{H} TT \rangle$ $\langle AC \hat{H} TT \rangle$ $\langle AC \hat{H} S_0 S_1 \rangle$ $\langle S_0 S_1 \hat{H} S_0 S_1 \rangle$ $\langle CA \hat{H} CA \rangle$ $\langle AC \hat{H} AC \rangle$ $\langle TT \hat{H} TT \rangle$ $ V_{eff} _{10}^2$ $(variance)$ τ $\langle S_0 S_1 \hat{H} AC \rangle$	265.33 -254.84 99.61 -6.33 2.12 -145.11 98.17 2.91 3.11 3.04 2.98 1.93 -306.69 -100.74	206.66 -213.66 61.26 3.19 -1.93 147.04 -87.94 2.80 3.37 3.15 3.16 2.18 -16.71 350.43 -362.53	-442.11 -446.17 -37.24 1.27 1.72 55.29 -44.35 3.13 2.94 3.03 3.00 2.19 -242.55 80.76 -64.11	-131.51 213.99 -1.36 1.09 -196.68 75.40 2.85 3.03 2.88 2.86 1.83 2.86 1.83 -248.95 97.68 -120.58	-110.13 250.62 -2.93 1.86 -158.01 -82.67 2.90 3.21 3.10 3.00 2.11 4.88×10 ⁻³ (21 8.12×10 ⁻⁴ (13 Pc15 -20.79 333.41 -341.28	$\begin{array}{c} 274.28 \\ -281.35 \\ 158.78 \\ 1.49 \\ -5.70 \\ 0.23 \\ 78.91 \\ 3.14 \\ 3.04 \\ 3.05 \\ 3.22 \\ 2.24 \\ 2.30 \times 10^{-5}) \\ .9 \\ 5.90 \times 10^{-7}) \\ 1.7 \\ \hline \\ \hline \\ -292.27 \\ 5.74 \\ -26.66 \\ 250 \\ 4.5 \\ -26.66 \\ 250 \\ 4.5 \\ -26.66 \\ 250 \\ 4.5 \\ -26.66 \\ 250 \\ 4.5 \\ -26.66 \\ 250 \\ 4.5 \\ -26.66 \\ 250 \\ 4.5 \\ -26.66 \\ 250 \\ 4.5 \\ -26.66 \\ 250 \\ 4.5 \\ -26.66 \\ 250 \\ 4.5 \\ -26.66 \\ 250 \\ 4.5 \\ -26.66 \\ 250 \\ 4.5 \\ -26.66 \\ 250 \\ 4.5 \\ -26.66 \\ 250 \\ 4.5 \\ -26.66 \\ 250 \\ 4.5 \\ -26.66 \\ 250 \\ 4.5 \\ -26.66 \\ 250 \\ 4.5 \\ -26.66 \\ 250 \\ 4.5 \\ -26.66 \\ 250 \\ -26.66 \\ -26.6$	-298.06 136.46 -2.71 3.52 99.53 -105.85 3.46 2.79 3.18 3.15 2.25 -295.87 -365.07 343.32	-234.42 111.98 3.08 -6.05 55.38 103.79 2.93 3.07 2.97 3.21 2.00 190.66 415.09 -377.04	-186.38 108.70 3.64 -3.93 136.45 -73.07 2.80 3.16 3.11 3.01 1.95 -211.29 159.52 -148.15	-273.81 129.00 -1.11 3.18 66.62 -85.01 3.18 2.89 3.02 2.97 2.02 -299.92 109.35 -74.07	
$\langle S_0 S_1 \hat{H} AC \rangle$ $\langle S_1 S_0 \hat{H} AC \rangle$ $\langle S_1 S_0 \hat{H} AC \rangle$ $\langle S_1 S_0 \hat{H} TT \rangle$ $\langle S_1 S_0 \hat{H} TT \rangle$ $\langle CA \hat{H} TT \rangle$ $\langle AC \hat{H} TT \rangle$ $\langle AC \hat{H} TT \rangle$ $\langle S_0 S_1 \hat{H} S_0 S_1 \rangle$ $\langle S_1 S_0 \hat{H} S_1 S_0 \rangle$ $\langle CA \hat{H} CA \rangle$ $\langle AC \hat{H} AC \rangle$ $\langle TT \hat{H} TT \rangle$ $ V_{eff} _{10}^2$ $(variance)$ τ $\langle S_0 S_1 \hat{H} AC \rangle$ $\langle S_0 S_1 \hat{H} AC \rangle$ $\langle S_1 S_0 \hat{H} AC \rangle$	265.33 -254.84 99.61 -6.33 2.12 -145.11 98.17 2.91 3.11 3.04 2.98 1.93 -306.69 -100.74 154.67 330.22	206.66 -213.66 61.26 3.19 -1.93 147.04 -87.94 2.80 3.37 3.15 3.16 2.18 -16.71 350.43 -362.53 -6.96 -1.20	-442.11 -446.17 -37.24 1.27 1.72 55.29 -44.35 3.13 2.94 3.03 3.00 2.19 -242.55 80.76 -64.11 243.63	-131.51 213.99 -1.36 1.09 -196.68 75.40 2.85 3.03 2.88 2.86 1.83 -248.95 97.68 -120.58 218.83	-110.13 250.62 -2.93 1.86 -158.01 -82.67 2.90 3.21 3.10 3.00 2.11 4.88×10 ⁻³ (21 8.12×10 ⁻⁴ (13 Pc15 -20.79 333.41 -341.28 21.93	274.28 -281.35 158.78 1.49 -5.70 0.23 78.91 3.14 3.04 3.05 3.22 2.24 2.30×10 ⁻⁵) .9 5.90×10 ⁻⁷) 1.7 -292.27 5.74 -26.66 279.92	-298.06 136.46 -2.71 3.52 99.53 -105.85 3.46 2.79 3.18 3.15 2.25 -295.87 -365.07 343.32 247.94	-234.42 111.98 3.08 -6.05 55.38 103.79 2.93 3.07 2.97 3.21 2.00 190.66 415.09 -377.04 -154.93	-186.38 108.70 3.64 -3.93 136.45 -73.07 2.80 3.16 3.11 3.01 1.95 -211.29 159.52 -148.15 205.27	-273.81 129.00 -1.11 3.18 66.62 -85.01 3.18 2.89 3.02 2.97 2.02 -299.92 109.35 -74.07 267.51	
$\langle S_0 S_1 \hat{H} AC \rangle$ $\langle S_1 S_0 \hat{H} CA \rangle$ $\langle S_1 S_0 \hat{H} CA \rangle$ $\langle S_1 S_0 \hat{H} TT \rangle$ $\langle CA \hat{H} TT \rangle$ $\langle AC \hat{H} TT \rangle$ $\langle AC \hat{H} TT \rangle$ $\langle S_0 S_1 \hat{H} S_0 S_1 \rangle$ $\langle S_1 S_0 \hat{H} S_1 S_0 \rangle$ $\langle CA \hat{H} CA \rangle$ $\langle AC \hat{H} AC \rangle$ $\langle TT \hat{H} TT \rangle$ $ V_{eff} _{10}^2$ $(variance)$ $\frac{\tau}{V_S}$ $\frac{\langle S_0 S_1 \hat{H} CA \rangle}{\langle S_0 S_1 \hat{H} AC \rangle}$ $\langle S_1 S_0 \hat{H} AC \rangle$	265.33 -254.84 99.61 -6.33 2.12 -145.11 98.17 2.91 3.11 3.04 2.98 1.93 -306.69 -100.74 154.67 330.22 1.97	206.66 -213.66 61.26 3.19 -1.93 147.04 -87.94 2.80 3.37 3.15 3.16 2.18 -16.71 350.43 -362.53 -6.96 1.40	-442.11 -446.17 -37.24 1.27 1.72 55.29 -44.35 3.13 2.94 3.03 3.00 2.19 -242.55 80.76 -64.11 243.63 -7.39	-131.51 213.99 -1.36 1.09 -196.68 75.40 2.85 3.03 2.88 2.86 1.83 2.88 1.83 -248.95 97.68 -120.58 218.83 -0.14	-110.13 250.62 -2.93 1.86 -158.01 -82.67 2.90 3.21 3.10 3.00 2.11 4.88×10 ⁻³ (21 8.12×10 ⁻⁴ (13 Pc15 -20.79 333.41 -341.28 21.93 0.33 6.33	$\begin{array}{c} 274.28 \\ -281.35 \\ 158.78 \\ 1.49 \\ -5.70 \\ 0.23 \\ 78.91 \\ 3.14 \\ 3.04 \\ 3.05 \\ 3.22 \\ 2.24 \\ 2.30 \times 10^{-5}) \\ .9 \\ 5.90 \times 10^{-7}) \\ 1.7 \\ \hline \\ \hline \\ -292.27 \\ 5.74 \\ -26.66 \\ 279.92 \\ -0.72 \\ -0.72 \\ \end{array}$	-298.06 136.46 -2.71 3.52 99.53 -105.85 3.46 2.79 3.18 3.15 2.25 -295.87 -365.07 343.32 247.94 -0.90	-234.42 111.98 3.08 -6.05 55.38 103.79 2.93 3.07 2.97 3.21 2.00 190.66 415.09 -377.04 -154.93 8.32	-186.38 108.70 3.64 -3.93 136.45 -73.07 2.80 3.16 3.11 3.01 1.95 -211.29 159.52 -148.15 205.27 -3.22	-273.81 129.00 -1.11 3.18 66.62 -85.01 3.18 2.89 3.02 2.97 2.02 -299.92 109.35 -74.07 267.51 -3.68	

$\langle CA \hat{H} TT \rangle$	149.64	25.14	36.94	116.72	-79.18	-11.47	-77.42	97.58	-95.42	-88.22	
$\langle AC \hat{H} TT \rangle$	-103.88	-47.82	-206.97	-244.43	46.94	-90.19	84.98	-35.27	-22.88	-129.23	
$\langle S_0 S_1 \hat{H} S_0 S_1 \rangle$	2.94	2.85	3.00	3.09	3.00	3.12	3.06	3.15	2.94	2.84	
$\langle S_1 S_0 \hat{H} S_1 S_0 \rangle$	3.25	3.17	3.28	3.27	3.57	3.02	2.69	2.72	3.21	3.30	
$\langle CA \hat{H} CA \rangle$	3.13	3.05	3.13	3.20	3.49	3.14	2.85	3.01	3.10	3.16	
$\langle AC \hat{H} AC \rangle$	3.09	3.08	3.04	3.26	3.35	3.14	2.93	3.08	3.16	3.08	
$\langle \mathrm{TT} \hat{H} \mathrm{TT} \rangle$	2.26	2.06	2.20	2.53	2.84	2.04	1.72	2.00	2.27	2.18	
$ V_{\rm eff} _{10}^2$	6 29×10 ⁻³ (1 24×10 ⁻⁴)										
(variance) τ	17.0										
$ V_{\rm eff} _S^2$	8.11×10 ⁻⁴ (4.91×10 ⁻⁷)										
(variance)	131.8										
BPc16											
$\langle S_0 S_1 \hat{H} CA \rangle$	-33.80	-9.73	36.92	125.19	-109.43	93.55	83.04	-1.67	91.15	-83.23	
$\langle S_0 S_1 \hat{H} AC \rangle$	259.73	276.79	251.54	-4.92	317.10	72.75	283.81	268.31	214.89	156.71	
$\langle S_1 S_0 \hat{H} CA \rangle$	-259.37	-274.38	-231.70	12.97	-334.98	-53.25	-258.89	-256.59	-175.75	-122.67	
$\langle S_1 S_0 \hat{H} AC \rangle$	39.86	-0.74	6.11	-106.59	124.33	-102.30	-54.48	-2.04	-81.17	53.19	
$\langle S_0 S_1 \hat{H} TT \rangle$	2.75	-1.86	1.28	2.70	5.01	7.67	2.93	0.00	-4.96	-3.32	
$\langle S_1 S_0 \hat{H} TT \rangle$	-1.74	1.86	-4.84	-4.87	-5.84	1.85	1.79	0.87	-3.61	4.52	
$\langle CA \hat{H} TT \rangle$	-107.02	-206.97	-188.64	43.71	-291.99	-30.47	131.94	109.85	-121.11	-60.59	
$\langle AC \hat{H} TT \rangle$	-230.54	-85.43	-51.04	-152.11	-307.81	20.69	120.83	208.63	-61.16	-156.47	
$\langle S_0 S_1 \hat{H} S_0 S_1 \rangle$	2.81	3.00	2.80	2.65	2.82	2.82	2.85	2.85	3.04	2.87	
$\langle S_1 S_0 \hat{H} S_1 S_0 \rangle$	2.85	2.88	2.77	2.80	2.93	2.89	2.83	2.89	2.92	2.95	
$\langle CA \hat{H} CA \rangle$	3.04	3.01	3.04	2.82	3.08	2.84	3.04	2.86	2.97	3.05	
$\langle AC \hat{H} AC \rangle$	2.96	3.13	2.96	2.87	3.04	2.98	2.91	3.07	3.36	2.99	
$\langle \mathrm{TT} \hat{H} \mathrm{TT}\rangle$	1.60	1.76	1.59	1.37	1.83	1.73	1.73	1.63	2.12	1.76	
$ V_{eff} _{10}^2$ (variance)					2.71×10 ⁻³ ((7.77×10 ⁻⁶)					
τ					39	.5					
$ V_{\rm eff} _{S}^{2}$					4.31×10 ⁻³ ((1.50×10 ⁻⁵)					
τ_{s}					24	.8					
				В	Pc17						
$\langle S_0 S_1 \hat{H} CA \rangle$	414.19	381.76	298.93	212.23	384.56	253.79	290.38	217.95	318.84	254.58	
$\langle S_0 S_1 \hat{H} AC \rangle$	201.40	296.90	285.19	290.12	231.95	358.05	285.85	326.13	294.39	290.65	
$\langle S_1 S_0 \hat{H} CA \rangle$	-208.34	-320.34	-320.45	-322.99	-222.76	-334.94	-260.73	-328.24	-324.69	-278.03	
$\langle S_1 S_0 \hat{H} AC \rangle$	-429.29	-402.03	-331.70	-238.07	-345.05	-229.11	-308.80	-210.45	-353.08	-247.93	
$\langle S_0 S_1 H TT \rangle$	1.75	-4.38	2.31	-0.46	0.04	-2.01	4.51	-0.24	2.60	-7.46	
$\langle S_1 S_0 H TT \rangle$	-0.76	-2.26	0.81	1.56	-0.28	4.26	-4.08	6.46	0.47	-1.14	
$\langle CA H TT \rangle$	-87.97	4.26	-97.54	27.11	65.13	69.98	-72.66	-61.67	1.37	-63.74	
$\langle AC H TT \rangle$	37.18	-100.02	44.91	29.75	-70.65	-111.77	18.37	-15.60	52.26	-12.49	
$\langle S_0 S_1 H S_0 S_1 \rangle$	2.77	2.72	2.77	2.86	2.90	2.94	2.80	2.73	3.00	2.89	
$\langle S_1 S_0 H S_1 S_0 \rangle$	3.07	2.79	2.92	2.94	2.85	2.85	2.91	2.83	3.07	2.80	
$\langle CA H CA \rangle$	3.05	2.92	2.90	2.99	2.97	2.96	2.86	2.82	3.20	3.00	
(AC H AC)	3.16	2.84	3.11	3.02	3.08	2.93	3.02	2.93	3.19	2.91	
$\langle 1^{\circ}\Gamma H 1^{\circ}\Gamma\rangle$	2.12	1.91	1.86	1.88	1.88	1.93	1.87	1.65	2.46	1.71	
$ V_{eff} _{10}^2$ (variance)					1.13×10 ⁻³ ((1.50×10 ⁻⁶)					
τ					94	.8					
$ V_{eff} _{S}^{2}$ (variance)					1.47×10 ⁻³ ((1.70×10 ⁻⁶)					
τ_s					73	.0					
				В	Pc18						

$\langle S_{\alpha}S_{4} \hat{H} CA\rangle$	320.35	242.48	315.57	268.59	245.87	244.33	254.14	205.61	320.06	358.65	
$\langle S_0 S_1 \hat{H} AC \rangle$	264.98	231.93	78.51	377.32	58.99	-153.05	-5.81	-83.81	-5.34	54.94	
$\langle S_1 S_0 \hat{H} CA \rangle$	-281.14	-263.94	-85.42	-403.54	-67.69	179.17	36.04	79.97	-31.49	-82.35	
$\langle S_1 S_0 \hat{H} AC \rangle$	-330.43	-267.18	-276.76	-252.89	-254.58	-253.94	-254.49	-198.03	-322.15	-378.85	
$\langle S_0 S_1 \hat{H} TT \rangle$	-6.39	2.76	3.97	-6.92	1.24	0.62	-2.21	4.48	7.42	2.26	
$\langle S_1 S_0 \hat{H} TT \rangle$	-6.87	9.72	-5.98	-2.92	0.51	-0.64	-4.81	-0.32	1.04	5.35	
$\langle CA \hat{H} TT \rangle$	84.51	-19.68	-66.18	-92.79	-32.52	-39.93	16.79	-112.94	-59.81	83.70	
$\langle AC \hat{H} TT \rangle$	-97.04	45.25	-21.39	43.73	-53.32	-22.11	-69.93	-70.91	31.39	134.45	
$\langle S_0 S_1 \hat{H} S_0 S_1 \rangle$	2.87	2.85	2.82	3.48	2.87	2.85	2.91	2.89	2.71	2.78	
$\langle S_1 S_0 \hat{H} S_1 S_0 \rangle$	3.31	3.24	3.21	2.87	3.15	3.21	3.32	3.29	3.12	3.27	
$\langle CA \hat{H} CA \rangle$	3.24	3.32	3.17	3.33	3.33	3.58	3.48	3.41	3.17	3.25	
$\langle AC \hat{H} AC \rangle$	3.22	3.19	3.20	3.37	3.28	3.36	3.41	3.55	3.14	3.24	
$\langle TT \hat{H} TT \rangle$	2.43	2.35	2.09	2.83	1.97	2.11	2.42	2.28	1.95	2.15	
$ V_{\rm eff} _{10}^2$					1.34×10^{-3}	(7.45×10-6)					
(variance)	1.34^10 ~ (/.43×10 ~)										
τ	80.0										
$ V_{\rm eff} _{S}^{2}$	1.02×10 ⁻³ (1.68×10 ⁻⁶)										
(variance)	105.2										
$\langle S_0 S_1 \hat{H} CA \rangle$	95.07	-4.26	19.46	3.47	85.66	60.62	1.18	15.07	-125.65	-74.85	
$\langle S_0 S_1 \hat{H} AC \rangle$	9.08	97.40	78.64	-41.06	140.53	199.62	178.25	107.04	95.78	125.70	
$\langle S_1 S_0 \hat{H} CA \rangle$	-10.27	-138.79	-80.29	44.13	-148.65	-162.36	-184.72	-123.12	-119.71	-130.65	
$\langle S_1 S_0 \hat{H} AC \rangle$	-111.76	18.13	-23.09	7.30	-60.15	-53.37	3.83	-20.66	120.29	79.24	
$\langle S_0 S_1 \hat{H} TT \rangle$	2.06	-3.43	-0.58	-3.08	2.38	5.02	-1.03	-2.74	3.36	4.29	
$\langle S_1 S_0 \hat{H} TT \rangle$	-2.65	4.16	2.22	2.10	-8.77	-4.27	1.11	2.37	-4.41	-5.36	
$\langle CA \hat{H} TT \rangle$	-14.60	-127.47	18.94	-17.25	109.62	165.57	-129.68	-44.99	140.20	96.90	
$\langle AC \hat{H} TT \rangle$	-65.15	-121.28	-117.08	5.96	12.15	25.62	-99.91	-42.86	204.51	137.17	
$\langle S_0 S_1 \hat{H} S_0 S_1 \rangle$	3.10	2.97	2.91	3.00	2.81	3.06	2.80	3.09	2.90	2.81	
$\langle S_1 S_0 \hat{H} S_1 S_0 \rangle$	2.91	3.03	3.34	3.21	3.19	3.15	3.29	3.26	2.98	3.27	
$\langle CA \hat{H} CA \rangle$	3.37	3.37	3.45	3.56	3.26	3.31	3.39	3.57	3.49	3.45	
$\langle AC \hat{H} AC \rangle$	3.42	3.39	3.72	3.59	3.39	3.37	3.43	3.51	3.15	3.35	
$\langle \mathrm{TT} \widehat{H} \mathrm{TT} \rangle$	2.22	2.11	2.32	2.47	2.20	2.22	2.12	2.43	1.89	2.24	
$ V_{\rm eff} _{10}^2$ (variance)					2.24×10 ⁻⁴ ((1.41×10 ⁻⁷)					
τ					47	6.3					
$ V_{\rm eff} _S^2$					2 25×10-4	(8.42×10 ⁻⁸)					
(variance)					2.23.10 (
	474.7										

References

1. A. D. Platt, J. Day, S. Subramanian, J. E. Anthony and O. Ostroverkhova. J. Phys. Chem. C, 2009, **113**, 14006-14014.

2. B. J. Walker, A. J. Musser, D. Belijonne and R. H. Friend, Nat. Chem., 2013, 5, 1019-1024.

3. A. A. Bakulin, S. E. Morgan, T. B. Kehoe, M. W. Wilson, A. W. Chin, D. Zigmantas, D. Egorova and A. Rao, *Nat. Chem.*, 2016, **8**, 16–23.

- 4. T. Zeng, R. Hoffmann and N. Ananth, J. Am. Chem. Soc., 2014, 136, 5755-5764.
- 5. M. B. Smith and J. Michl, Chem. Rev., 2010, 110, 6891–6936.