Electronic Supplementary Information

Optimization of solution-processed amorphous cadmium gallium oxide for high-performance thin-film transistors

Minh Nhut Le^a, Paul Lee^a, Seung-Han Kang^b, Kyunghan Ahn^a, Sung Kyu Park^b, Jaesang Heo^{a*}, and Myung-Gil Kim^{a*}

^aSchool of Advanced Materials Science and Engineering, Sungkyunkwan University

2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea

^bSchool of Electrical and Electronics Engineering, Chung-Ang University

84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea

Email of corresponding (*) authors: myunggil@skku.edu and heojs38@gmail.com

	Mobility (V _{on}	V_{th}	SS
	$cm^2V^{-1}S^{-1})$	(V)	(V)	(V/dec)
Initial	11.9	-5	4.49	1.71
One week exposure to ambient air	12.15	-8	3.41	1.31

Table S1. Electrical performances of optimized a-Cd_{5.5}Ga_{4.5}O_{12.25} TFT annealed at 500 °C:Comparison before and after 7 days exposure to ambient air.

Figure S1. Atomic force microscopy (AFM) images of CdO thin-films annealed at (a) 500°C and (b) 350 °C.

Figure S2. AFM images of CdGaO thin films annealed at 500 °C with Cd:Ga ratios of a) 9:1, b) 8:2, c) 7:3, d) 6:4, e) 5:5, and f) 4:6.

Figure S3. a) Root mean square surface roughness data for CdGaO films with Cd:Ga ratios ranging from 10:0 to 4:6, annealed at 350 °C. b) XRD patterns of CdGaO thin films with Cd:Ga ratios ranging from 10:0 to 4:6, annealed at 350 °C. c) Areal ratios of M–O–M, M–O_{vac}, and M–OH bonding states obtained from O 1s XPS profiles of *a*-CdGaO thin films with Cd:Ga ratios ranging from 7:3 to 2:8, annealed at 350 °C, after surface sputtering.

Figure S4. AFM images of CdGaO thin films annealed at 350 °C with Cd:Ga ratios of a) 9:1, b) 8:2, c) 7:3, d) 6:4, e) 5:5, and f) 4:6.

Figure S5. Energy-dispersive X-ray spectroscopy (EDS) mapping image of a) CdO thin-film and b) optimized *a*-Cd_{5.5}Ga_{4.5}O_{12.25} thin-film annealed at 500°C.

Figure S6. XPS O 1s analysis of CdGaO thin films annealed at 500 °C with Cd:Ga ratios of a) 10:0, b) 9:1, c) 8:2 d) 7:3, e) 6:4, f) 5:5, g) 4:6, h) 3:7, and i) 2:8 after surface sputtering.

Figure S7. XPS O 1*s* analysis of CdGaO thin films annealed at 350 °C with Cd:Ga ratios of a) 10:0, b) 9:1, c) 8:2 d) 7:3, e) 6:4, f) 5:5, g) 4:6, h) 3:7, and i) 2:8 after surface sputtering.

Figure S8. Tauc plots of CdO thin films annealed at a) 500 and b) 350 °C, and bandgap value of CdGaO thin films as a function of the amount of Ga incorporated, with ratios ranging from 10:0 to 2:8 for films annealed at c) 500 and d) 350 °C.

Figure S9. Tauc plots of CdGaO thin films with Cd/Ga ratios ranging from 9:1 to 2:8, annealed at 500 °C.

Figure S10. Tauc plots of CdGaO thin films with Cd/Ga ratios ranging from 9:1 to 2:8, annealed at 350 °C.

Figure S11. UV–vis spectra of CdGaO-based thin films with compositional ratios ranging from 10:0 to 2:8, annealed at a) 500 and b) 350 °C.

Figure S12. a) Transfer characteristics of the CdO-based TFT, annealed at 350 °C. b) Transfer characteristics of the CdGaO-based TFT with Cd/Ga ratios ranging from 7:3 to 3:7, annealed at 350 °C.

Figure S13. Transfer curves of the CdGaO TFT with Cd:Ga ratios ranging from 7:3 to 3:7, annealed at 500 °C.

Figure S14. Transfer curves of the CdGaO TFT with Cd:Ga ratios ranging from 7:3 to 3:7, annealed at 350 °C.

Figure S15. a) Transfer characteristics of the optimized a-Cd₅Ga₅O_{12.5} TFT under positive bias stress ($V_G = 50$ V; $V_{DS} = 25$ V) for 3600 s annealed at 350 °C. b) Threshold voltage shift value of the *a*-CdGaO-based TFT with Cd/Ga ratios ranging from 7:3 to 3:7 under above-mentioned positive bias stress, annealed at 350 °C.

Figure S16. Transfer characteristics of the optimized *a*-Cd_{5.5}Ga_{4.5}O_{12.25} TFT under negative bias stress ($V_G = -50$ V; $V_{DS} = 25$ V) for 3600 s, annealed at 500 °C.

Figure S17. Transfer curves of optimized *a*-Cd_{5.5}Ga_{4.5}O_{12.25} TFTs annealed at 500 °C on a) SiO₂ with simple wet etching and b) glass substrate with solution-processed alumina as dielectric obtained via the standard lithography patterning process.

Figure 18. Transfer characteristics of the optimized *a*-Cd_{5.5}Ga_{4.5}O_{12.25} TFT annealed at 500°C : Comparison before and after one week exposure to ambient air.

Figure S19. Output waveform of the seven-stage ring oscillator operating with supply voltages of a) 28.5, b) 32, c) 35, and d) 38 V and the optimized $a-Cd_{5.5}Ga_{4.5}O_{12.25}$ TFT.