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Data collection and prepossessing:

We collected a total of 95 sets of data based on the passivation material for passivating the 

perovskite/ETL interface of perovskite solar cells with p-i-n type. Each group of data includes 

photovoltaic parameters of the device (PCE, Voc and Jsc), rA, AX, PX, and Molecular SMILES 

code as shown in Table S1. The performance of the device is relatively concentrated, therefore 

the prediction accuracy in these segments is high. 
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Fig. S1 Evaluation index for six types of the molecular fingerprints with RF model

Fig. S2 Correlation matrix between the 13 input features and the PCE. The values are the 

Pearson correlation coefficient, and the sign (±) of the value means positive (+) or negative (-) 

correlation.



Model performance evaluation:

Using the coefficient of determination (R2), the root means square error (RMSE) and 

Pearson’s coefficient (r) judge the pros and cons of the algorithm. The calculation formulas are 

shown in (1) (2) and (3).
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where n is the total number of data; and  represent the original and predicted values, 𝑥𝑖 𝑥'
𝑖

respectively;  and stand for the average of the original and predicted values, respectively.More 𝑥̂ 𝑥̂' 

importantly r, R2, and RMSE in each algorithm is measured 5 times and the average is used to to 

increase the reliability of algorithm.   

Machine learning settings:



The algorithm network is all completed by python. After reading the data with pandas, the 

data set is divided into training set and test set, normalized and standardized. According to the 

characteristics of the data, the Scikit Learn class is called to initially obtain random forest (RF), 

K-nearest neighbors (KNN), support vector machine (SVM), extreme gradient boosting 

(XGBoost), and gradient boosting decision tree (GBDT) to establish the algorithm network model. 

We divide the data set based on 7:3, which means the training set with 70% of the data is applied 

for training to obtain the network model parameters of the five algorithms, and then we use the 

cross-validation method to evaluate the performance for the network model via the remaining 30% 

of the data.
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Fig. S3 (a)Polar plots of the feature importance derived from tree-based ML algorithms (GBDT, 

XGBoost, and RF) and (b)Input feature importance analysis based on XGBoost model.

Device fabrication:

For the device with ITIC treatment



The indium tin oxide (ITO) substrates with a nominal sheet resistance of 15 Ω/square were 

cleaned with detergent and ultrasonicated in special glass lotion, deionized water, and ethanol. The 

cleaned ITO substrates were dried by nitrogen gas and rested for 15 minutes in the petri dish before 

UV-ozone treatment. The PEDOT:PSS (Clevios Al4083) was filtered through 

polytetrafluoroethylene (PTFE) filters (0.45µm) prior to the layers fabrication. The PEDOT:PSS 

was spin-coated onto ITO glass and then thermally annealed at 150 °C for 15 min in ambient 

atmosphere. The substrates with PEDOT:PSS were transferred into a N2-filled glove box, where 

1.8M CH3NH3PbI3 solution(the molar ratio of PbI2 and CH3NH3I is 1:1 in DMF with 10 wt.% 

PbCl2, and stirred overnight at 65 °C. ) was applied onto the ITO/PEDOT:PSS substrates by one 

spin-coating step at 7500 rpm for 25s. After about 3.5s of the spin-coating, 400 μL chlorobenzene 

(CB) was quickly dripped onto the rotating substrate. After drying the substrate at 100 °C for 5 

min, phenyl-C61-butyric acid methyl ester (PC61BM) solution (30 mg/mL−1 in CB) was deposited 

onto the perovskite films. Finally, 5 nm of BCP (Luminescence Technology Corp.) and 100 nm of 

silver (Ag) were thermally evaporated at ~10-7 torr to form the contact electrodes. The active area 

of perovskite devices is about 1.8 mm2.

For the device with ITIC-M treatment

All the perovskite solar cells with ITIC-M treatment were fabricated onto indium tin oxide 

(ITO)-coated glass substrates. The ITO substrates with sheet resistance of 15 Ω/□ were 

consecutively cleaned with glass lotion, de-ionized water, and alcohol. The cleaned ITO glass 



substrates were dried by nitrogen gas and then were treated by UV-Ozone for 15 min to further 

clean the substrates and improve the work function. We use modified PEDOT:PSS (m-

PEDOT:PSS) as HTL, the m-PEDOT:PSS was prepared by combining 1 ml filtered PEDOT:PSS , 

5 ml de-ionized water and 60 mg sodium polystyrenesulfonate (PSS-Na). The m-PEDOT:PSS was 

deposited onto ITO substrates at 5000 rounds per minute (rpm) for 20s. Then the substrates were 

dried in air at 150 ℃ for 10 min. After that, the substrates were transferred into N2 glove box. To 

prepare perovskite films, the MAPbIxCl3-x precursor solution(809.25mgof PbI2, 20.75mg of 

PbCl2，300mg of MAI in 1 ml DMF.) was deposited onto m-PEDOT:PSS/ITO substrates at 7000 

rpm for 25 s. And the perovskite coated substrates were thermally annealed at 100 ºC for 10 min. 

The PCBM layer was deposited onto the perovskite layer at 1000 rpm for 40 s. Following a layer 

of BCP with a thickness about 8 nm and a silver (Ag) cathode layer of about 100 nm was deposited 

under 4×10-4 Pa vacuum conditions. The device area is defined by be the overlap of the Ag and 

ITO electrodes, which is 4 mm2.

Characterization:

The current-voltage characteristics of the devices were measured using a Keithley 2400 

source meter. The devices were illuminated under 1 sun, AM1.5G from Abet Technologies using 

a calibrated silicon diode. Steady-state photoluminescence (PL) was measured using a 

fluorescence spectrometer (Epsilon 3XLE) and Time-resolved photoluminescence spectra (TR-

PL) were carried out using a time-correlated single photon counting measurement system with 470 



nm excitation wavelength and 770 nm probing wavelength. XRD patterns of the perovskite films 

were obtained by X-ray diffractometer (XRD) (UItima IV X-ray diffractometer). AFM 

measurements were conducted with a Bruker Dimension Fastscan model in tapping mode with 

reflective probes resonating at 150 kHz frequency. X-ray photoelectron spectroscopy (XPS) 

measured by Thermo Scientific K-Alpha+ (monochromatic Al Ka, vacuum below 2×10−7mbar, 

Beam spot 30-400um is continuously adjustable with a step size of 5um, High performance data 

acquisition at low power (72 W)). And the surface potential images were performed by MFP-3D 

Infinity of Asylum Research. The perovskite layer was deposited on Si substrate. There was no 

buffer layer between Si substrate and perovskite layer. The scanning area and rate were 2.0 

µm×2.0 µm and 1 HZ, respectively. The lift height for KPFM measurements was 5 nm for all 

samples. The measurement was carried out under dark condition.

DFT calculation settings and analysis:

The structural optimization and electronic structure calculations were carried out by 

Cambridge Serial Total Energy Package (CASTEP) in Materials studio. The generalized gradient 

approximation (GGA) of the Perdew-Burke-Ernzerhof (PBE) functional was employed. Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm was used for the structural optimization of the model 

with the following optimization parameters: the calculation was expanded by using the ultrasoft 

pseudopotential with a cutoff energy of 435 eV, and the total energy was converged to 2×10−5 eV. 



The structural optimization was optimized until the force tolerance on each atom was smaller than 

0.05eVÅ-1, the stress tolerance was smaller than 0.1 GPa, and the displacement tolerance was 

smaller than 0.002 Å. The Monkhorst-Pack grids with the actual spacing of 0.041Å-1 and SCF 

tolerance of 2×e-6eV/atom was used in all DFT simulations.

CH3NH3PbI3 possesses a cubic structure, with the space group Pm-3m at room temperature. 

A 5×4×1 supper cell and a 15 Å vacuum slab were employed to investigate the adsorption of 

different additives. The additive was placed on the supper cell surface to optimize to convergence. 

And the solubility of Pbl2 is generally lower compared to MAI. Pbl2 with slightly beyond the 

stoichiometric ratio is used to address this issue.However, this also results in the exposure of Pbl2 

surfaces in MAPbI3 perovskite. Therefore, in order to approximate the actual surface state as 

closely as possible, we established a calcium iron perovskite model based on the Pbl2 surface for 

studying the interaction between this surface and ITIC in DFT calculations.

Fig. S4 (a) Structure diagram of PSCs, (b) J-V curves of the devices based on the pristine and 

treated perovskite films.

Table S1 the device performance of perovskite solar cells with different ITIC concentrations.



Anti-solvent Jsc(mA/cm-2) Voc(V) FF(%) PCE(%)

CB 18.67 0.82 0.80 12.24

CB+ITIC(1mg/ml) 19.03 0.90 0.81 13.87

CB+ITIC(2mg/ml) 19.87 0.92 0.80 14.62

CB+ITIC(4mg/ml) 17.57 0.92 0.82 13.25
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Fig. S5 ITIC-M molecule structure with the effective screened fingerprint fragments.

Table S2 the device performance of perovskite solar cells with different ITIC-M concentrations.

Anti-solvent Jsc(mA/cm-2) Voc(V) FF(%) PCE(%)

CB 19.51 0.95 0.79 14.61

CB+ITIC-M(1mg/ml) 20.44 1.00 0.81 16.59

CB+ITIC-M(2mg/ml) 20.71 1.02 0.82 17.33

CB+ITIC-M(4mg/ml) 20.30 0.96 0.81 15.88

Moreover, planar structured perovskite solar cells can be treated as a single junction diode, 

it’s I-V characteristics can be described by:



                         (4)
𝐽 = 𝐽𝑆𝐶 ‒ 𝐽0[exp (𝑞(𝑉 + 𝐽𝑅𝑠)

𝑚𝐾𝐵𝑇 ) ‒ 1]

where J is the current density flow through the external load, JSC is the short current density 

under light, J0 is the reverse saturation current density, q is the electron charge, V is the applied 

voltage, m is the ideality factor, KB is the Boltzmann constant, and T is the temperature. When the 

current flowing through the external circuit is 0, we can obtain Voc according to Equation (4): 
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From Equation (5), it can be seen that a higher Voc corresponds to a lower J0. The series resistance 

(Rs) and J0 of the cells can be calculated according to the diode equation (6) and (7) which come 

from equation (4):
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After the introduction of ITIC and ITIC-M, the Voc of corresponding devices has been 

significantly improved, taking the ITIC-M modified device as an example, by linearly fitting the 

ln(Jsc+J) vs (V+Rs·J), the values of J0 are calculated for the control and ITIC-M modified device 

are 6.51×10-8 and 3.90×10-9 mA/cm2, respectively, as shown in Fig. S6. The reduced J0 will 

contribute to the improvement of Voc.



Fig. S6 (a) Plots of dV/dJ versus (Jsc + J) -1and the linear fitting curves, (b) plots of ln (Jsc + 

J) versus (V – Rs·J) and the linear fitting curves.

J0 reflects the carrier recombination in the perovskite solar cells, according to the scanning 

electron microscope (SEM) results (Fig. 7Sa-7Sb), the average grain size of ITIC-M modified 

perovskite film is improved from 349 nm (control film) to 450 nm, as shown in Fig. 7Sc-7Sd, 

which means there are less grain boundaries in the ITIC-M modified perovskite film. The less 

grain boundaries will contribute to reduce the non-radiative recombination in the ITIC-M modified 

perovskite film. On the other hand, the ideality factor m of control and ITIC-M modified PSCs are 

calculated according to the slope of curves in Fig. S6(a), which are 1.86 and 1.57, respectively. A 

perfect solar cell has a m of unity, if m approaches 2, charge recombination processes are 

dominated by non-radiative trap-assisted recombination. An ideality factor m closer to unity infers 

that the solar cells operate with less trap-assisted recombination. In the PSCs with ITIC-M, the 

reduced m means the less trap-assisted recombination, which is evidence of improvements in Voc.



Fig. S7 (a-b) The SEM images of control and ITIC-M modified perovskite films, 

respectively; (c-d) the distribution of grain size of control and ITIC-M modified perovskite films, 

respectively.

Table S3 Datasets on the interface passivation at the perovskite/ETL interface of the PSCs

ID
Passivation 

materials

Device 

PCE

Control 

device 

PCE

rA AX PX
References 

DOI

1 TPPO 14.9 13.7 2.7 1:3 1:3 10.1016/j.optmat.2022.112264

2 capsaicin 21.88 19.16 2.7 0.949:3 1.025:3 10.1016/j.joule.2020.12.009

3 Y6 20.2 17.39 2.7 0.843:3 1.079:3 10.1021/acsami.1c13447

4 4,4'-Bipyridine 16.67 15.92 2.720 1.045:3 0.935:3 10.1016/j.solener.2019.08.026

5 2,2'-BiPy 9.31 15.92 2.720 1.045:3 0.935:3 10.1016/j.solener.2019.08.026

6 BCP 13.11 7.05 2.7 1:3 1:3 10.1109/JPHOTOV.2017.2651108

7 PFNOX 14 11.4 2.7 1.8:3 0.6:3 10.1002/advs.201500353

8 C3AI 20.3 17.7 2.7 1:3 1:3 10.1016/j.dyepig.2021.109385

9 C3A 19.6 17.7 2.7 1:3 1:3 10.1016/j.dyepig.2021.109385

10 C4 19.6 17.7 2.7 1:3 1:3 10.1016/j.dyepig.2021.109385

11 PVK 19.65 16.54 2.7 1:3 1:3 10.1021/acsaem.1c00219

12 2-HI-PVK 12.88 12.23 2.7 1:3 1:3 10.1021/acsaem.9b00757

13 4-HI-PVK 13.76 12.23 2.7 1:3 1:3 10.1021/acsaem.9b00757

14 P4VP 20.02 17.46 2.7 1:3 1:3 10.1039/C9TC06578D



15 PS-PAN 22.02 18.18 2.742 0.95:3 1.059:3 10.1016/j.nanoen.2020.105731

16 PHMT 21.11 18.11 2.7 1:3 1:3 10.1016/j.jechem.2020.12.035

17 ETMT 19.36 18.11 2.7 1:3 1:3 10.1016/j.jechem.2020.12.035

18 PRMT 18.57 18.11 2.7 1:3 1:3 10.1016/j.jechem.2020.12.035

19 DPSI 21.1 19.1 2.777 1:3 1:3 10.1002/adma.201803428

20 TMTA 20.22 19.08 2.7 1:3 1:3 10.1038/s41467-018-06204-2

21 PU 18.7 16.4 2.7 1:3 1:3 10.1002/adfm.201703061

22 SP1 18.75 18.19 2.7 1:3 1:3 10.1002/aenm.201803766

23 SP2 19.27 18.19 2.7 1:3 1:3 10.1002/aenm.201803766

24 SP3 20.43 18.19 2.7 1:3 1:3 10.1002/aenm.201803766

25 PBTI 20.67 18.89 2.712 0.989:3 1.005:3  10.1002/adfm.201808855

26 PEA 20.9 20.5 2.712 0.989:3 1.005:3 10.1038/s41560-019-0538-4

27 BA 20.8 20.5 2.712 0.989:3 1.005:3 10.1038/s41560-019-0538-4

28 Oam 23 20.5 2.712 0.989:3 1.005:3 10.1038/s41560-019-0538-4

29 BMIMBF4 19.8 18.5 2.727 0.953:3 1.049:3 10.1038/s41586-019-1357-2

30 F-PDI 18.28 15.37 2.7 1:3 1:3 10.1002/aenm.201900198

31 PFN-2TNDI 16.7 12.9 2.7 1.8:3 0.6:3 10.1002/aenm.201501534

32 HATNASOC7-Cs 17.62 15.91 2.7 0.949:3 1.025:3 10.1002/anie.201604399

33
HATNASO2C7-

Cs
14.42 15.91 2.7 0.949:3 1.025:3 10.1002/anie.201604399

34 HATNAS3C4 11.59 15.91 2.7 0.949:3 1.025:3 10.1002/anie.201604399

35 HATNAS3C7 13.49 15.91 2.7 0.949:3 1.025:3 10.1002/anie.201604399

36
HATNAS3C7-

C3h
13.38 15.91 2.7 0.949:3 1.025:3 10.1002/anie.201604399

37 HATNAS3C7-C3 13.95 15.91 2.7 0.949:3 1.025:3 10.1002/anie.201604399

38 ITIC-Th 22.87 21.85 2.716 0.989:3 1.005:3 10.1002/adma.202202100

39 IT-Cl 23.74 21.85 2.716 0.989:3 1.005:3 10.1002/adma.202202100

40 NAP 13.4 10.3 2.7 1.5:3 0.75:3 10.1016/j.isci.2018.11.003

41 EVA 19.01 17.15 2.674 0.871:3 1.112:3 10.1002/adfm.201902629

42 AIA 15.7 13.6 2.7 1:3 1:3  10.1002/adsu.202000078

43 HIA 17.29 13.6 2.7 1:3 1:3 10.1002/adsu.202000078

44 CA 19.06 13.6 2.7 1:3 1:3 10.1002/adsu.202000078

45 SubPc 13.6 9.96 2.7 1.8:3 0.6:3 10.1109/JPHOT.2016.2608619

46 PNDI-2T 21.13 19 2.7 1:3 1:3 10.1002/solr.202100236

47 thiazole 17.98 14.34 2.7 1:3 1:3 10.1021/acsami.8b16124

48 PEGDA 21.03 18.73 2.7 1:3 1:3 10.1021/acsami.0c11468

49 PLL 19.45 16.72 2.7 1:3 1:3 10.1016/j.jechem.2020.05.040

50 PVA 17.28 16.46 2.7 1:3 1:3 10.1021/acsami.1c08539

51 PMA 19.05 16.46 2.7 1:3 1:3 10.1021/acsami.1c08539



52 PAA 20.29 16.46 2.7 1:3 1:3 10.1021/acsami.1c08539

53 2FEABr 21.06 19.44 2.7 0.949:3 1.025:3 10.1007/s40820-022-00854-0

54 AIBN 19.56 16.92 2.7 1:3 1:3 10.1002/solr.202200238

55 AIBME 19.69 16.92 2.7 1:3 1:3 10.1002/solr.202200238

56 ACVA 19.21 16.92 2.7 1:3 1:3 10.1002/solr.202200238

57 BDAI2 23.1 20.8 2.643 0.85:3 1.15:3 10.1002/adfm.202205009

58 PDAI2 22.2 20.8 2.643 0.85:3 1.15:3 10.1002/adfm.202205009

59 TFBA 20.39 19.09 2.574 1:3 1:3 10.1002/inf2.12307

60 HA 19.5 18.4 2.612 0.824:3 1.176:3 10.1016/j.nanoen.2022.107193

61 BA 19.77 18.4 2.612 0.824:3 1.176:3 10.1016/j.nanoen.2022.107193

62 PA 20 18.4 2.612 0.824:3 1.176:3 10.1016/j.nanoen.2022.107193

63 PHA 20.72 18.4 2.612 0.824:3 1.176:3 10.1016/j.nanoen.2022.107193

64 TEAI 19.19 18.62 2.744 0.924:3 1.053:3 10.1002/ange.202202346

65 TEASCN 21.26 18.62 2.744 0.924:3 1.053:3 10.1002/ange.202202346

66 QA 15.6 13.4 2.7 1:3 1:3 10.1016/j.cej.2022.135107

67 CH3 17.91 17.49 2.744 0.824:3 1.176:3 10.1016/j.apsusc.2021.151740

68 CHO 18.68 17.49 2.744 0.824:3 1.176:3 10.1016/j.apsusc.2021.151740

69 COCH3 18.86 17.49 2.744 0.824:3 1.176:3 10.1016/j.apsusc.2021.151740

70 BHF 20.3 16.2 2.643 0.85:3 1.15:3 10.1002/solr.202200296

71 DMAII 13.14 10.53 1.81 0.793:3 1.103:3 10.1021/acsami.1c23637

72 BABr 20.3 18.5 2.7 1:3 1:3 10.1039/d2ee00759b

73 Trometamol 17.91 16.25 2.7 1:3 1:3 10.1021/acs.jpclett.2c01089

74 HaHc 9.18 4.75 2.79 1:3 1:3 10.1016/j.cej.2021.133745

75 PEAI 19.58 17.07 2.772 1:3 1:3 10.1002/adma.202110241

76 EDAI 20.67 17.07 2.772 1:3 1:3 10.1002/adma.202110241

77 PEAI-EDAI 22.51 17.07 2.772 1:3 1:3 10.1002/adma.202110241

78 TFAA 20.1 15.08 2.7 1:3 1:3 10.1021/acsaem.1c02984

79 FPA 21.28 17.87 2.7 1:3 1:3 10.1002/solr.202101101

80 2-TPAA 14.23 12.94 1.81 1:3 1:3 10.1016/j.cej.2022.136242

81 KBF4 23.04 21.13 2.604 0.888:3 1.135:3 10.1002/adfm.202204880

82 dtdn 18.34 16.76 2.7 1:3 1:3 10.1039/d1se01892b

83 coumarin343 19.8 18 2.643 0.85:3 1.15:3 10.1016/j.nanoen.2022.106935

84 3-HBA 23.25 21.56 2.741 0.917:3 1.065:3 10.1002/ange.202206914

85 SA 19.48 18.32 2.7 1:3 1:3 10.1016/j.apsusc.2022.152670

86 PTA 20.3 18.32 2.7 1:3 1:3 10.1016/j.apsusc.2022.152670

87 GuaBF4 20.87 18.09 2.7 1:3 1:3 10.1016/j.solmat.2022.111682

88 BCP-3N 20.9 18.7 2.729 1.151:3 0.924:3 10.1002/solr.202200559

89 BCP-Oam 17.3 18.7 2.729 1.151:3 0.924:3 10.1002/solr.202200559

90 BCP-3N-I 14.8 18.7 2.729 1.151:3 0.924:3 10.1002/solr.202200559



91 DMAI-TFMPHC 21.4 18.3 2.755 0.941:3 1.039:3 10.1016/j.cej.2022.135974

92 DMAI 20.7 18.3 2.755 0.941:3 1.039:3 10.1016/j.cej.2022.135974

93 TFMPHC 19.9 18.3 2.755 0.941:3 1.039:3 10.1016/j.cej.2022.135974

94 COTIC-4F 20.69 20.52 2.736 0.935:3 1.052:3 10.1002/aenm.202200005

95 PTB7-Th 21.4 20.52 2.736 0.935:3 1.052:3 10.1002/aenm.202200005

The specific code:

import numpy as np

import pandas as pd

import shap

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.model_selection import KFold

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import cross_val_score, GridSearchCV

from sklearn import metrics

from pandas import read_csv

import xgboost as xgb

from sklearn.ensemble import GradientBoostingRegressor

from sklearn.ensemble import RandomForestRegressor

from sklearn.svm import SVR

from sklearn.neighbors import KNeighborsRegressor

from scipy import stats

from sklearn.metrics import mean_squared_error

from sklearn.metrics import r2_score

from matplotlib.pyplot import savefig

#Read data

filename = ' .csv'



data0 = read_csv(filename)

X = data0.iloc[:, :]

y = data0.iloc[:, ]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=10)

scaler = StandardScaler()

scaler.fit(X_train)

X_train_std = scaler.transform(X_train)

X_test_std = scaler.transform(X_test)

#Select model

#XGBoost

param_grid = {'learning_rate': [0.1,0.15,0.35],'max_depth': [3],'min_child_weight': 

[3,4,5],'colsample_bytree': [0.8],'gamma': [0, 0.1, 0.2, 0.3],'reg_alpha': [0, 0.1, 0.2, 

0.3],'reg_lambda': [1,3,5]}

#GBDT

param_grid = {'n_estimators': [5,10,20,30,40,50,60,70,80,90,100,500],'max_features': 

['auto', 'sqrt'],'max_depth': range(1,10),'min_samples_leaf': [1, 2],}

#RF

param_grid = {'n_estimators': [10,20,30,40,50,60,70,80,100,500],'max_features': ['auto', 

'sqrt'],'max_depth': [3,5,8],'min_samples_split': [2,3,5],'min_samples_leaf': [1,2],'bootstrap': 

[True]}

#SVM

param_grid={'kernel':['linear','poly','rbf','sigmoid'],'degree':[1,2,3],'gamma':[0.01,0.05,0.1,0.

2,0.5,0.6,0.8],'C':[0.1,0.2,0.3,0.4,0.5,1],'epsilon':[0.5,1,2]}

#kNN

param_grid = {'weights': ['uniform'],'n_neighbors': range(2, 20),'algorithm': 

['ball_tree','kd_tree','brute']}



#Fit and predict

best_model = model.best_estimator_

y_train_hat = best_model.predict(X_train_std)

y_test_hat = best_model.predict(X_test_std)

#SHAP

xgb_model = xgb.XGBRegressor(random_state=42)

xgb_model = RandomForestRegressor(random_state=42)

xgb_model = GradientBoostingRegressor(random_state=42)

xgb_model.fit(X_train, Y_train)

shap.initjs()

explainer = shap.TreeExplainer(xgb_model)

shap.initjs()

shap_value = explainer.shap_values(X)

print(shap_value)

shap.summary_plot(shap_value, X)

shap.summary_plot(shap_value, X, plot_type="bar")

abs_shapvalue = abs(shap_value)

shap_average = np.average(abs_shapvalue,axis=0)

print(shap_average)


