Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

An Ultrasensitive Flexible Pressure, Temperature, and Humidity Sensor Based on

Structurally Adjustable Nano-through-hole Array Films

Shuang Xiao^{1, 2, 3}, Yin He^{1, 2, 3*}, Yawen Lu⁵, Xin Niu^{1, 2, 3}, Qianqian Li³, Junxian Wu², Dan

Luo^{1, 2, 3}, Fujun Tian², Gang Wan⁴ and Hao Liu^{1, 2, 3*}

Figure S1. Based on PPy/PU-CNTs nano-through-hole conductive film flexible

multiresponsive sensors packaging process diagram.

Figure S2. SEM images of three kinds of nano-through-hole AAO formwork (AAO-440, AAO-400 and AAO-380).
a) SEM images of AAO-440.
b) SEM images of AAO-400.
c) SEM images of AAO-380.
d) The pore diameter of three kinds of nano-through-hole AAO.
e) The pore depth of three kinds of nano-through-hole AAO.

Figure S3. SEM images of PPy/PU-CNTs nano-through-hole conductive film and PPy/PU-

CNT planar conductive film. a) SEM images of the nano-through-hole array conductive film.

b) SEM images of the planar conductive film.

Figure S4. Raman spectra of PPy/PU-CNTs nano-through-hole film and PPy/PU film.

Table S1. Sensitivity of PPy/PU-CNTs multiresponsive sensors in a certain temperature range

Temperature	20-50 °C	50-80 °C
Hole-380 sensor Sensitivity (% $^{\circ}C^{-1}$)	0.51	0.44
Hole-400 sensor Sensitivity ($\%$ °C ⁻¹)	0.56	0.66
Hole-440 sensor Sensitivity (%°C ⁻¹)	0.72	0.58

Figure S5. The resistance change rate image of the Hole-440 sensor during 100 cycles of

heating and cooling at temperatures range from 20 °C to 80 °C.

Table S2. Humidity sensitivity of PPy/PU-CNTs multiresponsive sensors in a certain

Humidity (RH%)	20	35	50	65	80
Hole-380 sensor Sensitivity (% RH^{-1})	0.18	0.26	0.49	0.68	1.28
Hole-400 sensor Sensitivity (% RH^{-1})	0.13	0.19	0.40	0.82	1.71
Hole-440 sensor Sensitivity (%RH ⁻¹)	0.19	0.32	0.57	1.33	3.51

humidity range

Figure S6. The resistivity change rate image of Hole-440 sensor during 100 loading and

unloading cycles under humidity of 20-80% RH.

Table S3. Sensitivity of PPy/PU-CNT multiresponsive sensors in a certain pressure range

(kPa⁻¹)

Pressure	0.2 kPa	0.5 kPa	1 kPa	5 kPa	12 kPa
Hole-380 sensor Sensitivity (kPa ⁻¹)	102.99	85.84	64.57	16.10	7.15
Hole-400 sensor Sensitivity (kPa ⁻¹)	72.66	55.6	12.26	3.02	0.78
Hole-440 sensorSensitivity (kPa ⁻¹)	42.55	27.81	11.66	3.67	0.71

Figure S7. Comparing the sensitivity of recently reported flexible multi-response sensors: (a)
 pressure response sensitivity comparison; (b) temperature response sensitivity comparison; (c)
 humidity response sensitivity comparison

		Sensitivity	Range	
	Electrical	Sp	Pressure	
Active material	response signal	ST	Temperature	Reference
	1 8	S_{H}	Humidity	
Organohydrogel based on		10.79%kpa ⁻¹	0-800%Strain	
hyaluronic acid and poly	Resistance	0.46%°C ⁻¹	25-100°C	[1]
(acrylic acid-co-acrylamide)		0.39%RH ⁻¹	11-98%RH	
Combon monotriba		53.7%kpa-1	0-50kpa	
Carbon nanotube-	Resistance	/	/	[2]
poryunnetnyishoxane		2.42%RH ⁻¹	15-85%RH	
Citric acid (CA) and sodium		10.53%kpa ⁻¹	0-26kpa	
polystyrene sulfonate (PSS)-	Resistance	/	/	[3]
thermoplastic polyurethane		2.15%RH ⁻¹	20-90%RH	
Single-walled carbon		77.78%kpa ⁻¹	0.024-230kpa	
nanotubes/polydimethylsiloxan	Resistance	/	/	[4]
e mixture		11.145%RH ⁻¹	25-80%RH	
Nickel networks on		2.576%kpa ⁻¹	0.1-12kpa	
polyurethane sponge	Resistance	1.77%°C-1	20-100°C	[5]
		0.69%RH-1	11-97%RH	
Soak-drying Melamine foam	D	22%kpa-1	0-5kpa	573
with the conducting aqueous	Resistance	0.6%°C ⁻¹	-/-140°C	[6]
KGO-CNT IIK		0.12%RH ¹	23-82%KH	
nanotubes zine oxide and 3.4		53.7%kpa ⁻¹	0-180kpa	
athylonodioyythionhono	Resistance	0.24%°C ⁻¹	0-25°C	[7]
nolystyrene sulfonate		0.25%RH ⁻¹	0-40%RH	
polystyrene sunonate poly(3.4-				
ethylenedioxythion)hene:poly(s		/	/	
tyrenesulfonate) (3-	Resistance	0.77%°C ⁻¹	25-50°C	[8]
glycidyloxypropyl)		/	/	
		7.76%kpa ⁻¹	0-400kpa	
Single-walled carbon	Resistance	/	/	[9]
nanotubes/polyalmethylsnox		/	/	
piezoelectric polyvinylidene				
fluoride nanofibrous		/	4.9-45kpa	
membrane doped with zinc	Resistance	0.38%°C	25-100°C	[10]
oxide nanoparticles carbon		/	/	
nanofibers				
Polydimethylsiloxane film		10.6%kpa ⁻¹	0-3.2kpa	
embeddedwith single-walled	Resistance	0.13%°C ⁻¹	25-105°C	[11]
carbon nanotubes and a		/	/	
porynniue min		34 24%kna ⁻¹	1 47-3 16kpa	
MXene (Ti3C2Tx) colloidal	Resistance	0.22%°C ⁻¹	25-100°C	[12]
flexible polyurethane foam	resistance	/	25 100 0	[12]
		/	/	
laser-induced graphene (LIG)	Resistance	/	/	[13]
and graphene oxide (GO)		1.11%RH ⁻¹	11-97%RH	
Laser-induced graphene (LIG)		/	/	
produced by irradiation of	Resistance	0.28%°C ⁻¹	10-60°C	[14]
paper		0.001%RH ⁻¹	23-85%RH	
Polynyrrole/polyurethane-		102.99%kpa-1	0-12kpa	
carbon panotubes	Resistance	0.72%°C ⁻¹	20-80°C	This work
cur con nunotuoto		3.51%RH ⁻¹	20-80%RH	

Table S4. Comparison of recent reported flexible multiresponsive sensors.

References

- B. Chethan, H.G.R. Prakash, Y.T. Ravikiran, S.C. Vijayakumari, S. Thomas, Polypyyrole based core-shell structured composite based humidity Sensor operable at room temperature, Sensors and Actuators B: Chemical. 296 (2019) 126639. https://doi.org/10.1016/j.snb.2019.126639.
- [2] L. Miao, J. Wan, Y. Song, H. Guo, H. Chen, X. Cheng, H. Zhang, Skin-Inspired Humidity and Pressure Sensor with a Wrinkle-on-Sponge Structure, ACS Appl. Mater. Interfaces. 11 (2019) 39219–39227. https://doi.org/10.1021/acsami.9b13383.
- [3] S. Ding, Y. Lou, Z. Niu, J. Wang, X. Jin, J. Ma, B. Wang, X. Li, A Highly Sensitive, Breathable, and Biocompatible Wearable Sensor Based on Nanofiber Membrane for Pressure and Humidity Monitoring, Macro Materials & amp; Eng. 307 (2022) 2200233. https://doi.org/10.1002/mame.202200233.
- [4] C. Yang, A. Abodurexiti, X. Maimaitiyiming, Flexible Humidity and Pressure Sensors Realized by Molding and Inkjet Printing Processes with Sandwich Structure, Macromol. Mater. Eng. 305 (2020) 2000287. https://doi.org/10.1002/mame.202000287.
- [5] J. Tong, N. Wang, Q. Wang, S. Chen, B. Sheng, Improved sensitive conductive sponge sensors with tunnel-crack broadening for pressure, humidity and temperature sensing applications, Sensors and Actuators B: Chemical. 358 (2022) 131497. https://doi.org/10.1016/j.snb.2022.131497.
- [6] B.B. Bhatt, L. Kumar, A. Kushwaha, D. Gupta, An ultra-compressible piezoresistive strain and pressure sensor based on RGO-CNT-Melamine foam composite for biomedical sensing, Sensors and Actuators A: Physical. 331 (2021) 112875. https://doi.org/10.1016/j.sna.2021.112875.
- [7] H.S. Jo, C.-W. Park, S. An, A. Aldalbahi, M. El-Newehy, S.S. Park, A.L. Yarin, S.S. Yoon, Wearable multifunctional soft sensor and contactless 3D scanner using supersonically

sprayed silver nanowires, carbon nanotubes, zinc oxide, and PEDOT:PSS, NPG Asia Mater. 14 (2022) 23. https://doi.org/10.1038/s41427-022-00370-y.

- [8] Y.-F. Wang, T. Sekine, Y. Takeda, K. Yokosawa, H. Matsui, D. Kumaki, T. Shiba, T. Nishikawa, S. Tokito, Fully Printed PEDOT:PSS-based Temperature Sensor with High Humidity Stability for Wireless Healthcare Monitoring, Sci Rep. 10 (2020) 2467. https://doi.org/10.1038/s41598-020-59432-2.
- [9] A. Abodurexiti, C. Yang, X. Maimaitiyiming, High-Performance Flexible Pressure and Temperature Sensors with Complex Leather Structure, Macromol. Mater. Eng. 305 (2020) 2000181. https://doi.org/10.1002/mame.202000181.
- [10] Y. Wang, M. Zhu, X. Wei, J. Yu, Z. Li, B. Ding, A dual-mode electronic skin textile for pressure and temperature sensing, Chemical Engineering Journal. 425 (2021) 130599. https://doi.org/10.1016/j.cej.2021.130599.
- Y. Su, K. Ma, X. Zhang, M. Liu, Neural Network-Enabled Flexible Pressure and Temperature Sensor with Honeycomb-like Architecture for Voice Recognition, Sensors. 22 (2022) 759. https://doi.org/10.3390/s22030759.
- [12] V. Adepu, V. Mattela, P. Sahatiya, A remarkably ultra-sensitive large area matrix of MXene based multifunctional physical sensors (pressure, strain, and temperature) for mimicking human skin, J. Mater. Chem. B. 9 (2021) 4523–4534. https://doi.org/10.1039/D1TB00947H.
- [13] X. Yao, L. Chen, Z. Luo, C. Ye, F. Liang, T. Yang, X. Liu, X. Tian, H. Bi, C. Wang, C. Cai, L. Lyu, X. Wu, High-performance flexible humidity sensors for breath detection and non-touch switches, Nano Select. 3 (2022) 1168–1177. https://doi.org/10.1002/nano.202100343.
- [14] B. Kulyk, B.F.R. Silva, A.F. Carvalho, P. Barbosa, A.V. Girão, J. Deuermeier, A.J.S. Fernandes, F.M.L. Figueiredo, E. Fortunato, F.M. Costa, Laser-Induced Graphene from

Paper by Ultraviolet Irradiation: Humidity and Temperature Sensors, Adv Materials Technologies. 7 (2022) 2101311. https://doi.org/10.1002/admt.202101311.