Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Controllable and tuneable growth of NaYbF₄:Tm (0.5%) Fe (5%) @ Na(Yb/Y)F₄ - core @ shell and the effect of their geometry on upconversion luminescence..

Elena Ureña-Horno^a Keqing Liu^a and Marco Giardiello.^{a*}

^aDepartment of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK

E-mail: marco.giardiello@liverpool.ac.uk

Supplementary Information

Figure S1	Size histograms of core and core shell structures using different Yb ³⁺ concentration during the shell growth	Pages 2
Figure S2	FTIR spectra of NaYbF4: Tm (0.5%) Fe (5%) core and NaYbF4: Tm (0.5%) Fe (5%) @ NaYF4:Yb(x%) - core @ shell structures	3
Figure S3	XRD spectra of NaYbF4: Tm (0.5%) Fe (5%) core and NaYbF4: Tm (0.5%) Fe (5%) @ NaYF4:Yb(x%) - core @ shell structures	4
Figure S4	UV Enlargement of (101) and (201) diffraction peaks of the XRD pattern obtained for core and core @ shell nanoparticles	5
Figure S5	UC emission spectra of NaYbF4: Tm (0.5%) Fe (5%) core and NaYbF4: Tm (0.5%) Fe (5%) @ NaYF4: Yb (x%) - core @ shell structures.	6
Figure S6	Integrated intensity in the range of 438-490 nm and 270-380 nm.	7
Figure S7	Dependence of the integrated intensity from core, core @ shell with 0% Yb^{3+} , and core @ shell with 100% Yb^{3+} concentration.	8
Figure S8	Lifetime measurement of the UCL emission at 362 nm and 450 nm	9

Figure S1. Size histograms of core and core shell structures using different Yb³⁺ concentration during the shell growth: a) NaYbF₄: Tm (0.5%) Fe (5%) core and (b-f) NaYbF₄: Tm (0.5%) Fe (5%) @ NaYF₄: Yb (x%) core shell nanoparticles synthesized with x= 0%, 20%, 40%, 60%, 80%, and 100%. Black bars from the histograms indicate the size of core length meanwhile the red colour corresponds to the diameter.

Figure S2 FTIR spectra of NaYbF₄: Tm (0.5%) Fe (5%) core and NaYbF₄: Tm (0.5%) Fe (5%) @ NaYF₄:Yb(x%) - core @ shell structures synthesized where x = 0%, 20%, 40%, 60%, 80%, and 100%.

Figure S3 XRD spectra of NaYbF₄: Tm (0.5%) Fe (5%) core and NaYbF₄: Tm (0.5%) Fe (5%) @ NaYF₄:Yb(x%) - core @ shell structures synthesized where x = 0%, 20%, 40%, 60%, 80%, and 100%. Measurements were acquired using a Cu K- α source (with λ = 1.54059 Å). Hexagonal β -NaYbF₄ (PDF card No.: 00-027-1427) and cubic α -NaYbF₄ (PDF card No.: 00-077-2042.

Figure S4. Enlargement of (a)(101) and (b)(201) diffraction peaks of the XRD pattern obtained for core and core @ shell nanoparticles. Measurements were acquired using a Cu K- α source (with λ = 1.54059 Å).

Figure S5. a) UC emission spectra of NaYbF₄: Tm (0.5%) Fe (5%) core and NaYbF₄: Tm (0.5%) Fe (5%) @ NaYF₄: Yb (x%) - core @ shell where x = 0, 20, 40, 60, 80 and 100%. For the measurements, nanoparticles were dispersed in hexane and measured with a 980 nm CW laser excitation.

Figure S6. Integrated intensity in the range of a) 438-490 nm and b) 270-380 nm. For the measurements, nanoparticles were dispersed in hexane and measured with a 980 nm CW laser excitation.

Figure S7. Dependence of the integrated intensity in the range of 330 - 353 nm (red line), 353 - 370 nm (blue line), 438 - 462 nm (green line), and 462- 490 nm (purple line) on pump power from (a) core, (b) core @ shell with 0% Yb³⁺, and (c) core @ shell with 100% Yb³⁺concentration. The excitation wavelength was fixed to 980 nm, and the PL spectra was recorded using different pump powers.

Figure S8. Lifetime measurement of the UCL emission at 362 nm (a-c) and 450 (d-f) obtained from (a,d) NaYbF₄: Tm (0.5%) Fe (5%) core, (b,e) NaYbF₄: Tm (0.5%) Fe (5%) @ NaYF₄ core – shell, and (c,f) NaYbF₄: Tm (0.5%) Fe (5%) @ NaYbF₄ core – shell structures.