Supporting Information

Reliable and stable ratiometric luminescent thermometer based on dual near-infrared emission in Cr³⁺-doped LaSr₂Ga₁₁O₂₀ phosphor

Xihui Shan,^a Michele Back,^b Dongxun Chen,^a Shihai Miao,^a Ruiqi Shi^a and Yanjie Liang*^a

^aKey Laboratory for Liquid-Solid Structure Evolution and Processing of Materials,

Ministry of Education, Shandong University, Jinan 250061, P. R. China

^bDepartment of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice,

Venice 30172, Italy

*Corresponding author: Yanjie Liang E-mail: yanjie.liang@sdu.edu.cn

Experimental details Synthesis

LaSr₂Ga₁₁O₂₀:Cr³⁺ phosphors were prepared by conventional high-temperature solidstate reaction method. Stoichiometric amounts of La₂O₃, SrCO₃, Ga₂O₃, and Cr₂O₃ were weighed accurately and ground in an alumina mortar to form a homogeneous fine powder. The mixed powder was prefired at 900 °C in air for 2 h and cooled down to room temperature naturally. The pre-fired material was again ground to a fine powder. After that, the obtained powder was fired at 1400 °C for 6 h in air. After cooling down to room temperature naturally, the samples were ground again to acquire the final phosphors.

Characterization

The XRD measurements were done on a DMAX-2500PC Powder X-ray diffractometer (normal scanning rate: 10°/min, 10–70°; parameters for refinement: 0.02° step size, 10 s counting time, 10–70°). The TOPAS academic software was used for crystal structure refinement. The morphology and energy-disperse X-ray spectroscopy (EDS) of the assynthesized phosphor were measured by a JSM-7800F field-emission scanning electron microscope (FE-SEM). The photoluminescence measurements were done using an FLS1000 spectrofluorometer (Edinburgh Instruments) loaded with a photomultiplier tube detector (PMT, 200–900 nm), and a 400 W Xe lamp was used as the excitation source. UH4150 spectrophotometer equipped with an integrating sphere was used to measure the diffuse reflection spectra. The low-temperature PL and PLE spectra (77 K) and temperature-dependent PL spectra (100–460 K range) were measured using an OptistatDN cryostat (Oxford Instruments) equipped with a MercuryiTC temperature-controlled system.

Fig. S1 SEM image of the LaSr₂Ga₁₁O₂₀:3%Cr³⁺ phosphor. The inset is particle size distributions of the phosphor.

Fig. S2 Concentration-dependent emission spectra of LaSr₂Ga₁₁O₂₀:x%Cr³⁺ (x = 0.5, 1, 3, 5, 7, and 10) phosphors under 420 nm excitation.

Fig. S3 Decay curves of $LaSr_2Ga_{11}O_{20}:Cr^{3+}$ phosphors under different Cr^{3+} doping concentrations under excitation at 420 nm, monitored at (a) 700 nm and (b) 750 nm, respectively. The upper inset is the dependence of the fluorescence lifetime on the Cr^{3+} concentration.

Fig. S4 Normalized photoluminescence and excitation spectra of $LaSr_2Ga_{11}O_{20}$:3%Cr³⁺ phosphor at room temperature.

Fig. S5 Excitation line of $BaSO_4$ and emission spectrum of the $LaSr_2Ga_{11}O_{20}:3\%Cr^{3+}$ phosphor collected using an integrating sphere. The inset shows a magnification of the emission spectrum.

Fig. S6 (a) Temperature dependence of the PL intensity for both the ${}^{2}E \rightarrow {}^{4}A_{2}$ and ${}^{4}T_{2} \rightarrow {}^{4}A_{2}$ transitions and the overall PL intensity. (b) Spectral shift of the R₁-line as a function of temperature in the 100–460 K range.

Fig. S7 Temperature dependence of thermal resolution ΔT_{\min} in the range of linearity of the Boltzmann law.

Fig. S8 (a) Demonstration of measuring the temperature of a metal block. The LaSr₂Ga₁₁O₂₀:3%Cr³⁺ phosphor was placed at the surface of a metal block. The temperature of the metal block was adjusted by a temperature control device. After holding for 5 min at a certain temperature, the PL emission spectrum of the phosphor was recorded with a spectrofluorometer. (b) PL emission spectrum of the LaSr₂Ga₁₁O₂₀:3%Cr³⁺ phosphor located on the surface when the metal block is heated to 383.5 K. (c) Test temperature of the metal block obtained by the I_T/I_E value from (b) and the plot of $\ln(I_T/I_E)$ versus T^{-1} to calibrate the LaSr₂Ga₁₁O₂₀:Cr³⁺ Boltzmann optical thermometer.

Sample	LaSr ₂ Ga ₁₁ O ₂₀ :3%Cr ³⁺
Space group	I2/m
a (Å)	14.56872(17)
b (Å)	11.63243(13)
c (Å)	5.072881(58)
α=γ (°)	90
β (°)	91.260(2)
Volume (Å ³)	606.224(29)
R_{wp}	5.103%
R _p	3.511%
R _{exp}	0.723%

Table S1 Rietveld refinement parameters of the $LaSr_2Ga_{11}O_{20}:3\%Cr^{3+}$ phosphor.

Table S2 Spectroscopic parameters of Cr^{3+} in $LaSr_2Ga_{11}O_{20}$.

Spectroscopic parameters	LaSr ₂ Ga ₁₁ O ₂₀ :Cr ³⁺
E(² E) (R-line energy)	14320 cm ⁻¹ (corresponding to 698.3 nm)
$E({}^{4}T_{2})_{ZPL}(ZPL energy of {}^{4}T_{2})$	14925 cm ⁻¹
$E_{abs}({}^{4}T_{2})$ (absorption energy of ${}^{4}T_{2}$)	16313 cm ⁻¹ (corresponding to 613 nm)
E_{Stokes} (Stokes shift of the ${}^{4}T_{2}$ - ${}^{4}A_{2}$ transition)	2776 cm ⁻¹
$\hbar\omega$ (phonon energy of ${}^{4}T_{2}$)	226 cm ⁻¹
$S(^{4}T_{2})$ (Huang-Rhys parameter of $^{4}T_{2}$)	6.14
Sħω	1388 cm ⁻¹