Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information (ESI) for Journal of Materials Chemistry C

Electronic Supplementary Information (ESI)

Modulating the electron-donating ability of aggregation-induced

emission molecules for improved photo-responsive property

Ri-Na Su,^a Qing-Qing Pan,^a Guan-Yu Ding,^a Jing Sun,^{*a} Li-Li Wen,^{*a} Kui-Zhan Shao,^b Si-Bo Wang,^a Guo-Gang Shan^{*b} and Zhong-Min Su^{ac}

^a School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo functional Materials and Chemistry

University, Changchun 130022, P. R. China

E-mail: <u>sj-cust@126.com(J. Sun); wll@cust.edu.cn (L. L. Wen);</u>

^b Institute of Functional Material Chemistry and National & Local United Engineering Lab for Power Battery, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China

E-mail: shangg187@nenu.edu.cn (G. G. Shan)

^c State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, P. R. China

List of Contents for Supplementary Information:

1. Materials and instruments.

- 2. Scheme S1 Synthesis route of PBYN, OPBYN and DOPBYN molecules.
- 3. Fig. S1-Fig. S7 ¹H NMR and ¹³C NMR spectra of target compounds in DMSO- d_6 .
- 4. Fig. S8-Fig. S10 HRMS of PBYN, OPBYN, and DOPBYN without irradiation.
- 5. Fig. S11 Infrared spectra of DOPBYN, OPBYN and PBYN ligand.
- 6. Fig. S12 The electron density distribution and Gibbs free energies of Z-isomer and

E-one for (A) **DOPBYN**, (B) **OPBYN** and (C) **PBYN**.

7. Fig. S13 TGA and DSC measurements of DOPBYN, OPBYN and PBYN.

8. Table S1 Crystal data and refinement parameters for designed complexes.

9. Fig. S14 The molecular stacking structures of (A) DOPBYN (B) OPBYN (C) PBYN.

10. Table S2 Molecular stacking distance of designed compounds.

11. Fig. S15 PL spectra in CH₃CN/H₂O mixtures with different water fractions of (A)DOPBYN, (B) PBYN.

12. Fig. S16 Stimulus-response behavioral characteristics of OPBYN (5×10^{-5} M) in CH₃CN solution.

13. Fig. S17 Stimulus-response behavioral characteristics of **DOPBYN** (5×10^{-5} M) in CH₃CN solution.

14. Fig. S18-Fig. S20 ¹H NMR spectra of pure acetonitrile solution of DOPBYN,OPBYN, and PBYN molecule placed in dark room for 12 days.

15. Table S3 Photoconversion of DOPBYN, OPBYN and PBYN molecules at

different times of white light irradiation.

16. **Fig. S21** Photoconversion from *Z*-form to *E*-one at different times evaluated from ¹H NMR data.

17. Fig. S22-Fig. S24 High resolution mass spectra of PBYN, OPBYN, and DOPBYN in CH₃CN solution under illumination condition.

18. Fig. S25 Reversibility experiment of PBYN solution.

19. Fig. S26 ¹³C NMR spectrum of L-DOPBYN in DMF- d_7 .

20. **Fig. S27** The molecular packing mode between two adjacent molecules of designed compounds.

21. Table S4 Comparison of similar structures.

Materials and instruments

¹H NMR and ¹³C NMR were determined on a 500 MHz Bruker Avance spectrometer with acetonitrile-d, N, N-dimethyl formamide- d_7 , chloroform-d, and dimethyl sulfoxide- d_6 as solutions. Mass spectra were determined on the matrix-assisted laser desorption ionization time-of-flight mass spectrometer. The stability of DOPBYN, OPBYN, and PBYN compounds was characterized by thermogravimetric analysis (TGA) (a heating ramp rate of 10 °C/min under N2 condition) and differential scanning calorimetry (DSC) (a scan rate of 10 °C/min from 20 to 300 °C). The photophysical properties of absorption spectra (5.0×10^{-5} M) and photoluminescence (PL) spectra (5.0 \times 10⁻⁵ M) of **DOPBYN**, **OPBYN**, and **PBYN** in acetonitrile solution were determined with FL-4600 fluorescent spectrophotometer and Cary 500 UV-vis-NIR spectrophotometer, respectively. The single crystal diffraction data for DOPBYN, OPBYN, and PBYN were tested on the Bruker Apex II CCD diffractometer at 173 K. The crystals were analyzed by OLEX2 software. The excited state lifetimes under the solid of three compounds were measured with the Edinburgh FLSP920 fluorescence spectrophotometer. In the photo-response experiment, the light sources were ZF-5 portable UV analyzer (6 W) and white light LED mining lamp (200 W).

Scheme S1 Molecular structure and synthesis route of PBYN, OPBYN and DOPBYN molecules.

Fig. S2 ¹H NMR spectrum of PBYN in DMSO- d_6 .

Fig. S3 ¹H NMR spectrum of OPBYN in DMSO-*d*₆.

Fig. S4 ¹H NMR spectrum of **DOPBYN** in DMSO- d_6 .

Fig. S5 ¹³C NMR spectrum of PBYN in DMSO- d_6 .

Fig. S6 ¹³C NMR spectrum of **OPBYN** in DMSO- d_6 .

Fig. S7 ¹³C NMR spectrum of **DOPBYN** in DMSO- d_6 .

Fig. S8 High resolution mass spectrum of PBYN in CH₃CN solution before light irradiation.

Fig. S9 High resolution mass spectrum of OPBYN in CH₃CN solution before light

irradiation.

Fig. S10 High resolution mass spectrum of **DOPBYN** in CH₃CN solution before light irradiation.

Fig. S11 Infrared spectra of DOPBYN, OPBYN, and PBYN.

Fig. S12 The electron density distribution and Gibbs free energies of Z-isomer and E-

one for (A) DOPBYN, (B) OPBYN and (C) PBYN.

Fig. S13 (A) TGA and (B) DSC measurements of DOPBYN, OPBYN and PBYN.

Parameter	PBYN	OPBYN	DOPBYN
Formula	$C_{27}H_{18}N_2S$	$C_{27}H_{18}N_2OS$	$C_{27}H_{18}N_2O_2S$
Formula weight /g mol ⁻¹	402.49	418.49	434.49
Temperature/K	173.0	173.0	173.0
Crystal system	orthorhombic	orthorhombic	triclinic
Space group	Pbca	Pbca	P-1
a/Å	7.8395(2)	7.8600(3)	8.0016(3)
b /Å	15.8248(4)	16.4878(6)	8.5097(4)
c /Å	31.9711(8)	31.1694(11)	17.1865(7)
α /°	90	90	80.156(2)
β /°	90	90	80.347(2)
γ /°	90	90	67.154(2)
Volume /Å ³	3966.29(17)	4039.4(3)	1055.93(8)
Z	8	8	2
Density, calcd/g cm ⁻³	1.348	1.376	1.367
μ/mm^{-1}	1.564	1.596	1.584
F(000)	1680.0	1744.0	452.0
Reflection, collected	15470	20030	16448
R _{int}	0.0290	0.0374	0.0587
GOF on F ²	1.090	1.097	1.047
$R_1^a, wR_2^b[I \ge 2\sigma(I)]$	0.0333, 0.0820	0.0390, 0.0949	0.0551, 0.1416
R_1 , w R_2 (all data)	0.0380, 0.0846	0.0417, 0.0967	0.0676, 0.1498

Table S1 Crystal data and refinement parameters for designed compounds.

 ${}^{a}R_{1} = \sum (||F_{o}| - |F_{c}||) / \sum |F_{o}|. \ {}^{b}wR_{2} = [\sum w(|F_{o}|^{2} - |F_{c}|^{2})^{2} / \sum w(F_{o}^{2})]^{1/2}$

Fig. S14 Molecular stacking of (A) DOPBYN, (B) OPBYN, and (C) PBYN.

Table S2 Molecular stacking distance of designed compounds

Fig. S15 PL spectra of (A) DOPBYN and (B) PBYN in CH_3CN/H_2O solution (5 ×

10⁻⁵ M) with different water fractions (f_w), respectively. Insets in (A) and (B) were the contrast images at 0% and 99%.

Fig. S16 (A) UV-vis absorption and (B) PL spectra of **OPBYN** (5×10^{-5} M) in CH₃CN solution with continuous irradiation. (C) ¹H NMR spectra of **OPBYN** in CD₃CN solution (3.5 mM) upon exposure duration 365 nm UV light. (D) ¹H NMR spectra of **OPBYN** in CD₃CN solution (3.5 mM) upon exposure duration white light.

Fig. S17 (A) UV–vis absorption and (B) PL spectra of **DOPBYN** (5×10^{-5} M) in CH₃CN solution with continuous irradiation. (C) ¹H NMR spectra of **DOPBYN** in CD₃CN solution (3.5 mM) upon exposure duration 365 nm UV light. (D) ¹H NMR spectra of **DOPBYN** in CD₃CN solution (3.5 mM) upon exposure duration white light.

Fig. S20 ¹H NMR spectrum of pure acetonitrile solution of **PBYN** molecule placed in dark room for 12 days.

Table S3 Photoconversion of DOPBYN, OPBYN and PBYN molecules at different

Compounds/Time(h)	0	0.25	0.5	1.5	48	90
<i>E</i> -DOPBYN	0%	0%	3.8%	8.2%	81.0%	81.0%
<i>E</i> -OPBYN	0%	7.4%	16.0%	37.0%	81.0%	82.3%
E-PBYN	0%	43.0%	50.0%	81.0%	81.0%	89.6%

times of white light irradiation.

Fig. S21 Photoconversion from Z-form to E-one at different times evaluated from ¹H

Fig. S22 High resolution mass spectrum of PBYN under illumination condition.

Fig. S23 High resolution mass spectrum of OPBYN under illumination condition.

Fig. S24 High resolution mass spectrum of DOPBYN under illumination condition.

Fig. S25 ¹H NMR spectra of PBYN in CD₃CN solution (3.5 mM) toward different stimuli. i) without light irradiation. ii) 30 min irradiation with a 365 nm light. iii) 30 min irradiation with 254 nm light. iv) 90 min irradiation with 254 nm light. v) heated at 75 °C for 60 min.

Fig. S26 ¹³C NMR spectrum of L-DOPBYN in DMF- d_7 .

Fig. S27 The molecular packing of (A) OPBYN, (B) PBYN

Compound	Z/E Isomerization	Photodimerization	
4 ¹	\checkmark	×	
	\checkmark	×	
CSHe ³	×	\checkmark	
CSEt ⁴	×	\checkmark	
	\checkmark	×	
o=s N- NC OPBYN	\checkmark	×	
	\checkmark	\checkmark	

Table S4 Comparison with the reported analogues.

Reference

- 1. J. Li, H. K. Bisoyi, S. Lin, J. Guo and Q. Li, Angew. Chem. Int. Ed., 2019, 58, 16052-16056.
- 2. L. Gao, C. Bi, F. Liu, Z. Feng, C. Sun, S. Xu, W. Xu and P. Lu, *Adv. Optical Mater.*, 2022, 10, 2102321.
- 3. X. Ma, P. Li, J. Wang, M. Yin and Y. Zhang, *Cryst. Growth Des.*, 2022, **22**, 4133-4138.

4. P. Li, J. Wang, P. Li, L. Lai and M. Yin, *Mater. Chem. Front.*, 2021, 5, 1355-1363.