Electronic Supplementary Information

A high-performance broadband double-junction photodetector based on silicon nanowire arrays wrapped by silver nanoparticles for low-light imaging

Yuting Huang,^a Haifeng Liang,^{*b} Yingli Zhang,^a Shujing Yin,^a Xuyang Li,^a Changlong Cai,^a Weiguo Liu^a and Tiantian Jia^c

^a Key laboratory for optical measurement and thin films of Shaanxi Province, Xi'an Technological University, Xi'an, Shaanxi 710021, China

^b College of integrated circuits and optoelectronic chips, Shenzhen Technology University, Shenzhen, Guangdong 518118, China

° Key Laboratory of Low-Light-Level Night Vision Technology, Xi'an, Shaanxi 710065, China

*Corresponding author: E-mail: lianghaifeng@xatu.edu.cn

Fig. S1 Energy spectrum mapping of (i) silicon and silver elements of layer image, (ii) silicon and (iii) silver elements.

Fig. S2 *I-V* characteristic curve of the device measured in 650 nm irradiation, the breakdown voltage was approximately -9 V, and the inset shows the turn-on voltage was 0.6 V.

Fig. S3 Nanowire surface band bending and photogenerated carriers are separated under illumination, φ_B the recombination barrier.

Fig. S4 UV-vis-NIR reflectance spectra of the SiNW arrays and planar Si.

Table S1. Comparison of the typical figure of merits between our NN⁺/MS double junction enhanced SiNWs@AgNPs photodetector and other reported the nanowire silicon-based devices, mainly including R, Response wavelength range, D^* , I_{dark} , response speed (rise/fall time), and weak light sensitivity (low light intensity that can be detected).

Category	Devices	<i>R</i> [A/W]	Photo- response range [µm]	<i>D</i> * [cm Hz ^{1/2} /W]	I _{dark} [A]	Rise/fall time [µs]	Low power intensity	Ref.
Junction structure	p-SiNWs/nCdS nanoparticles	0.821 @900 nm	0.2-1.1	1.21×10 ¹²	~2×10 ⁻⁷	203 ms/ 429 ms	$\frac{8 \ \mu W/cm^2}{1 \ mW/cm^2} \sim$	1
	PdSe ₂ /SiNWA	0.726 @980 nm	0.2–2	3.19×10 ¹⁴	~10 ⁻¹⁰	3.4/3.9	27.5~56.6 nW/cm ²	2
	MoS ₂ /Al ₂ O ₃ /SiN Ws	0.61 @808 nm	0.3-1.6	1.48×10 ¹²	~10-9	8.4/40.9	$1.4 \text{ nW/cm}^2 \sim 714.3 \text{ mW/cm}^2$	3
	perovskite nanowires/Au	37.14 @473 nm	0.35-0.9	2.06×10 ¹³	~10 ⁻¹⁰	91/563	1.45 nW/cm ² ~ 145 mW/cm ²	4
plasmonic enhanced detector	AgNP/SiOx NW/Si	1.54 @370nm	0.3-0.85	2.12×10 ¹⁰	~10 ⁻¹⁰	0.12s/ 0.11s	/	5
	rGO:AuCQD/Si NW	0.5 @940nm	0.36-0.94	1.4×10 ¹²	~10 ⁻¹⁰	750ms/ 667ms	$\begin{array}{l} 0.2 \ \mu W/cm^2 \sim \\ 0.6 \ mW/cm^2 \end{array}$	6
	MoS ₂ /AgNPs/Si NWs	402.4 @532nm	0.405- 0.635	2.34×10 ¹²	~10-4	41ms/ 37ms	$\begin{array}{c} 0.13 \sim 231.7 \\ mW/cm^2 \end{array}$	7
	Au antennas/All- Si	0.05 @980nm	0.8-1.6	2×10 ¹¹	/	/	/	8
	Perovskite/Au squares/Si/SiO	4.2 @800nm	0.6-0.9	7.1×10 ¹¹	~10-9	/	1 mW/cm ²	9
	rGO/CQD/AgNP /Si	0.3 @940nm	0.36-0.94	4.1×10 ¹¹	~10-9	556 ms/ 526 ms	$\frac{1 \ \mu W/cm^2}{1 \ mW/cm^2} \sim$	10
NN ^{+/} MS double junction structure and plasmonic enhanced	SiNWs/AgNPs	2.2 @980nm	0.254-2.2	5.1×10 ¹⁴	~2×10 ⁻¹²	25/62	1.4nW/cm ² ~ 64.3mW/cm ²	This work

R, D^* , and I_{dark} represent responsivity, specific detectivity, and dark current, respectively. rGO and CQD represent reduced graphene oxide, quantum dot.

Supplementary References

- 1 A. Chandra, S. Giri, B. Das, S. Ghosh, S. Sarkar and K. K. Chattopadhyay, *Appl. Surf. Sci.*, 2021, **548**, 149256.
- 2 D. Wu, C. Jia, F. Shi, L. Zeng, P. Lin, L. Dong, Z. Shi, Y. Tian, X. Li and J. Jie, *J. Mater. Chem. A*, 2020, 8, 3632-3642.
- 3 J. Mao, B. Zhang, Y. Shi, X. Wu, Y. He, D. Wu, J. Jie, C.-S. Lee and X. Zhang, *Adv. Funct. Mater.*, 2022, 32, 2108174.
- 4 D. Wu, Y. Xu, H. Zhou, X. Feng, J. Zhang, X. Pan, Z. Gao, R. Wang, G. Ma, L. Tao, H. Wang, J. Duan, H. Wan, J. Zhang, L. Shen, H. Wang and T. Zhai, *InfoMat.*, 2022, 4, e12320.
- 5 N. M. Devi, S. A. Lynrah, R. Rajkumari and N. K. Singh, Sens. Actuators A: Phys., 2021, 327, 112744.
- 6 K. Sarkar, P. Devi, A. Lata, V. K. Lokku and P. Kumar, Adv. Opt. Mater., 2020, 8, 2000228.
- 7 C.-H. Mao, A. Dubey, F.-J. Lee, C.-Y. Chen, S.-Y. Tang, A. Ranjan, M.-Y. Lu, Y.-L. Chueh, S. Gwo and T.-J. Yen, ACS Appl. Mater. Interfaces, 2021, 13, 4126-4132.
- 8 B. Feng, J. Zhu, B. LU, F. Liu, L. Zhou and Y. Chen, ACS Nano, 2019, 13, 8433-8441.
- 9 B. Du, W. Yang, Q. Jiang, H. Shan, D. Luo, B. Li, W. Tang, F. Lin, B. Shen, Q. Gong, X. Zhu, R. Zhu and Z. Fang, *Adv. Optical Mater.*, 2018, 6, 1701271.
- 10 K. Sarkar, P. Devi, A. Lata, R. Ghosha and P. Kumar, J. Mater. Chem. C, 2019, 7, 13182.