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Experimental section:

Sample preparation

All phosphors were synthesized using a traditional solid-state method. The raw 

materials were CaCO3 (99.99%), MgO (99.99%), SiO2 (A.R.), and Eu2O3 (99.99%), 

which were used directly without any further treatment. The stoichiometric starting 

materials were thoroughly homogenized, the mixture was transferred into an alumina 

crucible and then loaded into a muffle furnace. Then the mixed samples were sintered 

at 1150 ℃ for 5 h under 95% N2+5% H2 reductive atmosphere. The obtained samples 

were cooled to room temperature and then ground again in an agate mortar. Finally, the 

solid powder samples were sintered at 550 ℃ in H2 for 1h, 3h and 5 h to obtain the VO-

CMSE for subsequent analysis and measurements. 

Characterization

The powder X-ray diffraction (PXRD) patterns of the as-obtained samples were 

collected on a X' Pert PRO diffractometer (Cu Kα radiation, λ = 1.5406 Å) at 298 K. 

The microstructure was analyzed using a scanning electron microscope (SEM, JSM-

6700F) and transmission electron microscope (FE-TEM, JEM-2100F, JEOL). The X-

ray photoelectron spectroscopy (XPS, Thermo fisher Scientific K-Alpha) was 

conducted to identify the chemical states of the elements in the sample. A FLS-980 

fluorescence spectrophotometer (Xe 900, 450 W arc lamps) was employed to obtain the 

photoluminescence (PL), photoluminescence excitation (PLE), and decay curve 

spectra. An absolute photoluminescence quantum yield measurement system 

(Hamamatsu, Quantaurus-QY plus C13534-31) was adopted to test the quantum 



efficiency. A LTTL-3DS measurement was used to record the 3D TL glow curves at a 

heating rate of 2 K•s-1.

Computational methods：

Utilizing density functional theory (DFT) as implemented in the Vienna ab-initio 

simulation package code,1 we investigate the electronic structures of title compound. 

We used projector augmented wave (PAW) method2 for the ionic cores and the 

generalized gradient approximation (GGA) for the exchange-correlation potential, in 

which the Perdew-Burke-Ernzerhof (PBE) type3 exchange-correlation was adopted. 

The reciprocal space was sampled with 0.03 Å−1 spacing in the Monkhorst-Pack scheme 

for structure optimization, while denser k-point grids with 0.01 Å−1 spacing were 

adopted for properties calculation. We used a mesh cutoff energy of 400 eV to 

determine the self-consistent charge density. All geometries are relaxed until the 

Hellmann-Feynman force on atoms is less than 0.01 eV/Å and the total energy change 

is less than 1.0×10−5 eV. The calculation models were built from the crystal structure. 

To calculate the formation energy of oxygen vacancies, the following equation was 

used: Evac = E(slab+Ovac) - E(slab) - E(O). Here, E(slab+Ovac), E(slab), and E(O) 

denote the energies of the surface with one oxygen vacancy, the clean surface, and the 

isolated oxygen atom, respectively.
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Fig. S1 Powder XRD patterns of CMSE and VO-CMSE. 



Fig. S2 SEM and EDS element mapping images of VO-CMSE. 



Fig. S3 High-resolution TEM image of VO-CMSE, the lattice disorder induced by defects is marked 
by red arrows. 
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Fig. S4. Fitted O 1s XPS spectra of CMSE under various treatment time.



Fig. S5 Bandgaps and DOSs of CMS and CMSE.
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Fig. S6 XPS spectrum of VO-CMSE.
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Fig. S7 PersL decay curves of VO-CMSE under various treatment time.
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Fig. S8 The IQE value of VO-CMSE under 450 nm excitation. 
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Fig. S9 PLE and PL spectra of CMSE and VO-CMSE. 
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Fig. S10 PersL decay curves of CMSE and VO-CMSE.
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Fig. S11 QE values of CMSE and VO-CMSE. 
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Fig. S12 TL spectra of CMSE and VO-CMSE. 
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Fig. S13 (a) Temperature dependent PL of VO-CMSE. (b) The calculated Ea value. 


