Supporting Information:

Solution-processed PSS:MoO$_x$ composite thin film with triple-function: passivation, antireflection and hole-selective transport for application into IBC solar cells

Kunpeng Ge1, Wenqian Zhang1, Xin Zhou1, Linlin Yang1, Jianxin Guo1, Feng Li3, Ying Xu1, Xueliang Yang1,2*

1. Hebei Key Lab of Optic-electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China

2. Department of Science and Technology, Hebei University, Baoding 071002, China

3. State Key Laboratory of Photovoltaic Materials and Technology, Yingli Green Energy Holding Co., Ltd, Baoding 071051, China

Keywords: crystalline silicon; passivation; surface engineering; functional group; the sulfonic functional group

Corresponding authors: yangxl1987@hbu.edu.cn(X. Yang)
Figure 1 XRD graphic of MoO$_x$ thin film

Figure S2 Typical He I (hv= 21.22 eV) UPS spectrum of MoO$_x$ (250 nm) thin film taken with 30.0 V bias applied to the sample
Figure S3 The mixed PSS:MoO$_x$ solutions with different molar ratios (the molar ratio of PSS to MoO$_x$ (1:x), where x is equal to 0.5, 10, 30, 50)

Figure S4 The AFM surface morphologies of MoO$_x$ thin film on Si substrate with RMS of 9.39 nm