Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supporting Information:

Solution-processed PSS: MoO_x composite thin film with triple-function: passivation, antireflection and hole-selective transport for application into IBC solar cells

Kunpeng Ge¹, Wenqian Zhang¹, Xin Zhou¹, Linlin Yang¹, Jianxin Guo¹, Feng Li³, Ying Xu¹, Xueliang Yang^{1,2}*

- 1. Hebei Key Lab of Optic-electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
- 2. Department of Science and Technology, Hebei University, Baoding 071002, China
- 3. State Key Laboratory of Photovoltaic Materials and Technology, Yingli Green Energy Holding Co., Ltd, Baoding 071051, China

Keywords: crystalline silicon; passivation; surface engineering; functional group; the sulfonic functional group

Corresponding authors: yangxl1987@hbu.edu.cn(X. Yang)

Figure 1 XRD graphic of MoO_x thin film

Figure S2 Typical He I (hv= 21.22 eV) UPS spectrum of MoO_x (250 nm) thin film taken with 30.0 V bias applied to the sample

Figure S3 the mixed PSS:MoO_x solutions with different molar ratios (the molar ratio of PSS to MoO_x (1:x), where x is equal to 0.5, 10, 30, 50)

Figure S4 The AFM surface morphologies of MoO_x thin film on Si substrate with RMS of 9.39 nm