Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Fig. S1 Roughness of WS₂ on Si/SiO₂ (a), 10nm CsSnBr₃ on WS2 (b) on Si/SiO₂ (c), 30nm CsSnBr₃ on WS₂ (d) on Si/SiO₂ (e), 50nm CsSnBr₃ on WS₂ (f) on Si/SiO₂ (g), 70nm CsSnBr₃ on WS₂ (h) and on Si/SiO₂ (i)

Fig.S2 FESEM images of 10nm CsSnBr₃ on WS₂ on Si/SiO₂ (a) \times 1500 and (b) \times 10000.

Fig.S3 AFM images of 30nm CsSnBr₃ on Si/SiO₂ (a) top view, (b) 3D image, height profile measured along the white line; AFM images of 30nm CsSnBr₃ on monolayer WS₂ (c) top view, (d) 3D image.

Fig.S4 AFM images of 70nm CsSnBr₃ on Si/SiO₂ (a) top view, (b) 3D image, height profile measured along the white line; AFM images of 70nm CsSnBr₃ on monolayer $WS_2(c)$ top view, (d) 3D image

Fig.S5 Taucs' plot of monolayer WS_2 and 70nm $CsSnBr_3$ on quartz.

Fig.S6 PL of CsSnBr3 with various thickness on Si/SiO2 $\,$

Fig.S7 Transfer curves of isolated WS₂ and CsSnBr₃, and the heterostructure of WS₂/50nm CsSnBr₃ at 330nm photo-excitation condition in logarithm and linear scale (a); Transfer curves of the heterostructure WS₂/50nm CsSnBr₃ at dark and 330nm photo-excitation conditions in logarithm and linear scale (b).

Fig.S8 Transfer curves of isolated CsSnBr₃ and the heterostructures of WS₂/CsSnBr₃ with various CsSnBr₃ thicknesses at dark (a) (b) and 330nm photo-excited (c) (d) conditions in logarithm scale

Fig.S9 Transfer curves of isolated CsSnBr₃ and the heterostructures of WS₂/CsSnBr₃ with various CsSnBr₃ thicknesses at dark (a) (b) and 330nm photo-excited (c) (d) conditions in linear

scale

Fig.S10 I_{ph} -optical power at the wavelength of 330nm for (a) monolayer WS₂, (b)30nm, (c)50nm and (d) 70nm CsSnBr₃ on Si/SiO₂

Fig.S11 Dependence of responsivity (R) and I_{ph} on optical power at the wavelength of 330nm for (a) monolayer WS₂, (b)30nm, (c)50nm and (d) 70nm CsSnBr₃ on Si/SiO₂

Fig.S12 I_{ph} -optical power at the wavelength of 330nm for the heterostructures of WS₂/CsSnBr₃ with CsSnBr₃ thickness of (a) 10nm, (b)30nm, (c)50nm, (d) 70nm

Fig.S13 Dependence of responsivity (R) and I_{ph} on optical power at the wavelength of 330nm for the heterostructures of WS₂/CsSnBr₃ with CsSnBr₃ thickness of (a) 10nm, (b)30nm, (c)50nm, (d) 70nm

Fig.S14 I_{ph} -wavelength under the optical power of 0.6μ w/mm² for (a) monolayer WS₂, (b)30nm, (c)50nm and (d) 70nm CsSnBr₃ on Si/SiO₂

Fig.S15 I_{ph} -wavelength under the optical power of 0.6μ w/mm² for the heterostructures of WS₂/CsSnBr₃ with CsSnBr₃ thickness of (a)10nm, (b)30nm, (c)50nm and (d)70nm

Sensing	Response	Responsivity	$D^* (\times 10^{10} \text{ cmW})$	Response	ref
materials	wavelength	(A/W)	$^{1}\text{Hz}^{1/2}$)	time (ms)	
	(nm)				
MASnI ₃ NWs		0.47	8.80×10^{5}	1500/400	1
$MAPb_{0.5}Sn_{0.5}I_3$	905	0.514	1.50×10^{11}		2
CsSnI ₃ NWs	940	0.054	3.85×10^{10}	83.8/243.4	3
CsSnI ₃	850	0.257	1.5×10^{11}	0.35/1.6	4
CsSnI ₃ /BMIMCI	405	0.237	1.18×10^{12}	0.23/0.19	5
50nm CsSnBr ₃	330	0.36	8.62×10^{10}	340/470	This
					work
$WS_2/50nm$	330	1.62	2.11×10^{11}	150/620	This
CsSnBr ₃					work

Table.S1 Comparison of our work with previously reported Sn-based perovskite photodetector

Fabrication Procedure

CVD growth of WS₂

The WS₂ nanosheets are fabricated by the chemical vapor deposition (CVD) processing on Si/SiO₂ substrate in a multitemperature zone tubular furnace as depicted in Fig.1(a). The Si/SiO₂ substrates are beforehand ultrasonically cleaned by the acetone, isopropyl alcohol (IPA) and deionized (DI) water subsequently, and then dried by pure nitrogen (N₂) to ensure the crystallization quality of WS₂ nanosheets. 0.4 g Sulphur powder is placed in the position of the center and near inlet gas entrance of the quartz tube which is filled with the inert nitrogen gas under a constant flow (80 sccm). N₂ gas was serviced as the carrier gas. In the high temperature zone, the 40 mg WO₃ and 8mg NaCl are mixed in a sapphire boat along with the Si/SiO₂ substrate placed upside down on it at the downstream. For growth of WS₂ nanosheets, two temperature zones are heated to the temperature of 150 and 830°C, respectively. The size of the as-prepared WS₂ nanosheets can be tuned by the reaction time, which is varied from 5 to 20 minutes. The pressure inside was maintained at 4×10^4 Pa, and then the furnace was naturally cooled down to the room temperature. Thermal evaporation of CsSnBr₃

The CsSnBr₃ perovskite films are fabricated by the co-evaporation of the CsBr and SnBr₂ source materials simultaneously in a multisource thermal evaporator (LiNing 386SA organic multisource thermal evaporation system, Shenyang, China). The base vacuum of the chamber was kept at 2×10^{-4} Pa. The CsSnBr₃ films are annealed at the temperature of 75°C during the thermal evaporation process, namely the in-situ annealing is performed to form the crystalline CsSnBr₃. The thickness of the CsSnBr₃ films can be monitored by the separated quartz crystal oscillators. Device Fabrication

Photoresist was spin-coated on as-grown WS_2 as mask. Photoresist patterns for electrodes were conducted through UV photolithography and development. After that, metal electrodes, Ag were deposited by using thermal evaporator and finally lifted off using remover. Then the as-fabricated electrodes were cleaned by DI water and dried by pure nitrogen. The electrodes were subsequently annealed at 350°C in N₂ for 30 min to reduce the contract resistance. Finally, CsBr and SnBr₂ were deposited to obtain WS₂/CsSnBr₃ devices. The diagram of the formed heterostructure photodetectors is shown in Fig(1) with the Ag electrodes on Si/SiO₂ substrates whose width and length of the channel are kept at 20 and 100 μ m.

1 A. Waleed, M. M. Tavakoli, L. L. Gu, Z. Y. Wang, D. Q. Zhang, A. Manikandan, Q. P. Zhang, R. J. Zhang, Y. L. Chueh and Z. Y. Fan. *Nano Lett.* 2017, **17**, 523-530.

- 2 J. M. Wu, Y. Q. Zhang, S. Yang, Z. L. Chen and W. Zhu. Front. Chem. 2022, 9, 821699.
- 3 M. M. Han, J. M. Sun, M. Peng, N. Han, Z. H. Chen, D. Liu, Y. A. Guo, S. Zhao, C. X. Shan, T.
- Xu, X. T. Hao, W. D. Hu and Z. X. Yang. J. Phys. Chem. C. 2019, 123, 17566-17573.
- 4 F. R. Cao, W. Tian, M. Wang, M. Wang and L. Li. InfoMat. 2020, 2, 577-584.
- 5 Z. Gao, H. Zhou, K. L. Dong, C. Wang, J. Y. Wei, Z. Li, J. S. Li, Y. J. Liu, J. Zhao and G. J. Fang. *Nano-Micro Lett.* 2022, **14**, 215.