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Fig. S1. (a) FT-IR spectra of the GG/PAAm and GG/PAAm/PA/LiCl hydrogels. (b) SEM image 

of the GG/PAAm/PA/LiCl hydrogel.

Fourier transforms infrared (FT-IR) spectroscopy of the GG/PAAm and GG/PAAm/PA/LiCl 

hydrogels was performed with a Thermo Scientific Nicolet iS5 spectrometer. In the spectrum of 

the GG/AAm hydrogel, the peaks at 3429 and 2926 cm-1 are attributed to the O-H stretching 

vibration and C-H asymmetric stretching vibration of GG (Fig. S1a).1 Meanwhile, the 

characteristic peaks at 3190, 1654 and 1612 cm-1 are respectively assigned to the N-H stretching 
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vibration, C=O stretching vibration and N-H bending vibration of PAAm.2-4 After the introduction 

of PA, the C-P-O stretching vibration of PA is found at the position of about 974 cm-1.5-6 

Moreover, the introduction of PA also weakened the peaks at 3190, 2926 and 1612 cm-1. 

Furthermore, the morphology of the GG/PAAm/PA/LiCl hydrogel was investigated by scanning 

electron microscopy (SEM, JSM-7610, Japan). As shown in Fig. S1b, it can be clearly seen that 

the hydrogel exhibits microscale pores and corrugated microstructures on the rough surfaces.

Fig. S2. (a) Stress-strain curves of the GG/PAAm/PA/LiCl hydrogel. (b) Fracture stress and strain 

of the GG/PAAm/PA/LiCl hydrogel. (c) Toughness and elastic modulus of the 

GG/PAAm/PA/LiCl hydrogel. (d) Storage modulus (G') and loss modulus (G") of the 

GG/PAAm/PA/LiCl hydrogel on strain amplitude sweep.

The elastic modulus was obtained by calculating a linear fit to the initial portion of the stress-

strain curve (0% to 20%). The toughness was assessed by the extension work at fracture, which 

was obtained by integrating the area of the stress-strain curve. The rheological analysis was 
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performed by a rheometer (Haake Mars60). The sample was made into a circular sheet with a 

diameter of 20 mm and a thickness of about 2 mm, and the strain amplitude sweep measurement 

was conducted with the strain increasing from 1% to 1300% at a frequency of 1 Hz.

Fig. S3. The fatigue resistance of GG/PAAm/PA/LiCl hydrogel during 200 stretching-releasing 

cycles.

Fig. S4. Adhesion strength of GG/PAAm/PA/LiCl hydrogels on various substrates.
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Fig. S5. The swelling property of the GG/PAAmPA/LiCl hydrogel in phosphate-buffered saline 

(PBS, pH = 7.4). The sample (diameter: 20 mm, thickness: 2 mm) was immersed in a phosphate-

buffered saline (PBS, pH= 7.4) solution at room temperature and then the immersing sample was 

taken out for weigh after wiping with filter paper at a fixed interval.
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