Supporting Information

Constructing efficient and stable CsPbBr_{3} nanocrystals via calcium and fluorine ions combined-treatment for light-emitting diodes

Mingming Liu ${ }^{\text {a }}$, Qun Wan ${ }^{\text {b,c }, ~ X i n r o n g ~ L i a o ~}{ }^{\text {a }}$, Wenji Zhan ${ }^{\text {a }}$, Changwei Yuan ${ }^{\text {a }}$, Qinggang Zhang ${ }^{\text {a }}$, Mengda He^{a}, Cong Zou ${ }^{\text {a }}$, Meitian Pan ${ }^{\text {a }}$, Long Kong ${ }^{\text {a }}$, Liang Li ${ }^{*}$ b, c

${ }^{\text {a }}$ School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
${ }^{\text {b }}$ Macao Institute of Materials Science and Engineering (MIMSE), Macao University of Science and Technology, Taipa 999078 Macao, China
'Zhuhai MUST Science and Technology Research Institute, Zhuhai 519099, China E-mail: 1li@must.edu.mo

Fig. S1 (a) Optical properties of PNCs with different amount of DDAF in step one.
(b) The corresponding normalized absorption and PL spectra.

Fig. S2 The PL spectra of PNCs with different treated time in step two. (The inset represents the corresponding PL intensity changes.)

(b)

Fig. S3 (a) The PL spectra of PNCs treated with different amount of DDAF in step three. (The inset represents the corresponding PL intensity changes.) (b) The ambient light images of different DDAF treated PNCs with adding anti-solvent in step three.

Fig. S4 Photographs of photoluminescence efficiency of (a) $\mathbf{C s P b B r}_{3}$, (b) $\mathrm{CsPbBr}_{3} @ \mathrm{~F}$, (c) $\mathrm{CsPbBr}_{3} @ \mathbf{F} \cdot \mathbf{C a}$ and (d) $\mathrm{CsPbBr}_{3} @ \mathbf{F} \cdot \mathbf{C a F}$ PNCs.

Fig. 55 The photostability and thermal quenching curves of $\mathrm{CsPbBr}_{3} \mathbf{P N C s}$

Fig. S6 (a) TEM (inset was the corresponding size distribution), (b) HRTEM, (c)
HAADF-STEM and the corresponding elemental mapping of (d) $\mathbf{C s}$, (e) Pb and (f) $\mathbf{B r}$ of $\mathrm{CsPbBr}_{3} \mathbf{P N C s}$.

Fig. S7 The elemental mapping of $\mathbf{C s}, \mathrm{Pb}$ and Br in a $\mathrm{CsPbBr}_{3} @ \mathbf{F} \cdot \mathbf{C a F} \mathbf{P N C}$ sample.

Fig. S8 (a) XPS survey spectra and (b) high-resolution XPS spectra of Br 3d of $\mathrm{CsPbBr}_{3}, \mathrm{CsPbBr}_{3} @ \mathrm{~F}, \mathrm{CsPbBr}_{3} @ \mathrm{~F} \cdot \mathrm{Ca}$ and $\mathrm{CsPbBr}_{3} @ \mathrm{~F} \cdot \mathbf{C a F}$ PNCs.

Fig. S9 (a) FTIR of $\mathrm{CsPbBr}_{3}, \mathrm{CsPbBr}_{3} @ \mathbf{F}, \mathrm{CsPbBr}_{3} @ \mathbf{F} \cdot \mathbf{C a}, \mathrm{CsPbBr}_{3} @ \mathrm{~F} \cdot \mathbf{C a F}$ nanocrystals. (b) The enlarged images of area I and II of picture (a).

Fig. S10 ${ }^{1} \mathrm{H}$ NMR of $\mathrm{CsPbBr}_{3}, \mathrm{CsPbBr}_{3} @ \mathbf{F}, \mathrm{CsPbBr}_{3} @ \mathbf{F} \cdot \mathbf{C a}, \mathrm{CsPbBr}_{3} @ \mathbf{F} \cdot \mathbf{C a F}$ PNCs.

Fig. S11 SEM images of (a) $\mathrm{CsPbBr}_{3} @ \mathrm{~F}$ and (b) $\mathrm{CsPbBr}_{3} @ \mathrm{~F} \cdot \mathrm{CaF}$ films.

Fig. S12 AFM images of (a) $\mathrm{CsPbBr}_{3} @ \mathbf{F}$ and (b) $\mathrm{CsPbBr}_{3} @ \mathbf{F} \cdot \mathbf{C a F}$ films.

Fig. S13 UPS spectra of (a) $\mathrm{CsPbBr}_{3} @ \mathrm{~F}$ and (b) $\mathrm{CsPbBr}_{3} @ \mathbf{F} \cdot \mathrm{CaF}$ PNCs samples.

Fig. S14 Current density as a function of voltage in (a) hole-only and (b) electrononly devices.

Table S1 Summary of time-resolved PL bi-exponential fitting parameters for solutions of the PNCs.

Samples	$\mathbf{A}_{\mathbf{1}}$ $(\%)$	$\boldsymbol{\tau}_{\mathbf{1}}$ $(\mathbf{n s})$	$\mathbf{A}_{\mathbf{2}}$ $\mathbf{(\%)}$	$\boldsymbol{\tau}_{\mathbf{2}}$ $\mathbf{(n s)}$	$\boldsymbol{\tau}_{\text {avg. }}$ $\mathbf{(n s)}$	$\mathbf{A}_{\mathbf{1}}{ }^{\prime}$ $\mathbf{(\%)}$	$\mathbf{A}_{\mathbf{2}}{ }^{\prime}$ $\mathbf{(\%)}$	$\boldsymbol{\Phi}$ $(\%)$	$\mathbf{K}_{\mathbf{r}}$ $\left(\boldsymbol{\mu s}^{-1}\right)$	\mathbf{K}_{nr} $\left(\boldsymbol{\mu s}^{-1}\right)$
CsPbBr_{3}	76.86	7.80	21.50	25.88	16.50	51.86	48.14	85.06	51.54	9.05
$\mathrm{CsPbBr}_{3} @ \mathrm{~F}$	85.55	6.96	16.22	24.54	14.00	59.95	40.05	91.44	65.29	6.11
$\mathrm{CsPbBr}_{3} @ \mathrm{~F} \cdot \mathrm{Ca}$	87.51	6.52	14.66	17.36	9.86	69.15	30.85	96.02	97.36	4.04
$\mathrm{CsPbBr}_{3} @ \mathrm{~F} \cdot \mathrm{CaF}$	96.81	6.61	6.91	19.50	8.85	82.60	17.40	98.95	111.77	1.19

Note:

(1) A and τ are the amplitude and decay time constant respectively. $\tau_{\text {avg }}$ is calculated as
$\tau_{\text {avg }}=\frac{A_{1} \tau_{1}^{2}+A_{2} \tau_{2}^{2}}{A_{1} \tau_{1}+A_{2} \tau_{2}}$
(2) A_{x} ' represented the proportion of τ_{x}, recalculated as

$$
A_{x}^{\prime}={\frac{A_{x} \tau_{x}}{A_{1} \tau_{1}+A_{2} \tau_{2}}}_{\mathbf{x}=\mathbf{1} \text { or } 2}
$$

(3)

$$
\Phi=\frac{k_{r}}{k_{r}+k_{n r}} \tau_{\text {avg. }}=\frac{1}{k_{r}+k_{n r}}
$$

k_{r} represents radiative combination rate
k_{nr} represents nonradiative combination rate

