Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Engineering anomalous elastic properties of coordination polymers and their amorphization by employing flexible linkers

Aleksandra Półrolniczak, Szymon Sobczak and Andrzej Katrusiak*

*Department of Materials Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu

Figure S1. The unit-cell angles of $Cd(HDA)_2(NO_3)_2$ as a function of pressure. Lines are for guiding the eye only. ESDs are smaller than plotted symbols.

Figure S2. $Cd(HDA)_2(NO_3)_2$ coordination sphere presented as Cd-O (a), Cd-N (b) and (c) pressure-induced reduction of the Cd-Cd' distances in the function of pressure. Lines are for guiding the eye only. ESDs are smaller than plotted symbols.

Poznańskiego 8, 61-614 Poznan, Poland, katran@amu.edu.pl.

Figure S3. The molecular volume (a) unit-cell parameters (b) and unit-cell angles (c) of $Cd(HDA)_2(NO_3)_2$ presented as a function of temperature. Lines are for guiding the eye only. ESDs are smaller than plotted symbols.

Figure S4. Site occupation factor of the disordered carbon atoms in HDA linker in α -phase. Full symbols represent the C3A atom, and open symbols C3B.

Figure S5. $Cd(HDA)_2(NO_3)_2$ coordination sphere presented as Cd-O (a), Cd-N (b) and (c) pressure-induced reduction of the Cd-Cd' distances in the function of temperature. Lines are for guiding the eye only. ESDs are smaller than plotted symbols.

Figure S6. $Cd_2(HDA)_3(NO_3)_4$ coordination sphere presented as Cd-O (a), Cd-N (b) distances and (c) pressure-induced reduction of the Cd-Cd' in the function of pressure. Lines are for guiding the eye only. ESDs are smaller than plotted symbols, despite the model for the measurement collected at 4.30 GPa which due to a partial amorphization and additional constrains require for refining the structure is of lower quality.

Figure S7. The hOl layers presenting the disappearance of the n glide plane (connected with appearance h + l = n reflections) above a pressure above 1.2 GPa for Cd₂(HDA)₃(NO₃)₄.

Figure S8. Changes in the Cu(HDA)₂(MeCN)₂·2BF₄ coordination sphere presented as a distances (a) Cu-B and Cu-F and (b) Cu-N distances pressure-induced reduction of the Cu-Cu' distance. Lines are for guiding the eye. ESDs are smaller than nlotted symbols

(b) The changes in torsion angles in HDA ligand (a) and pressure-induced reduction of the Cu-Cu'. Lines are for guiding (a) Figure S₁

Figure S10. Conformational changes in the HDA linker in Cd₂(HDA)₃(NO₃)₄, C_i-symmetric HDA from phase α (green) superimposed on HDA of phase β (pink). The torsion angles N3-C7-C8-C9 (τ) indicates the conformational change between phase α at 0.4 GPa (green) and phase β at 3.1 GPa (pink).

Figure S11. The adjacent binuclear centers bonded by a π -hole interaction NO₃···NO₃ between bidentate nitrate groups in Cd₂(HDA)₃(NO₃)₄.

Figure S12. $Cu(HDA)_2(MeCN)_2 \cdot 2BF_4$ structures projected along direction (a) [010], (b) [100], (c) view on the diamond-like framework.

(a)

(c)

(d)

Figure S13. Cd(HDA)₂(NO₃)₂ structures projected along direction (a) [100], (b) [010], (c) [001], [d] stereographic projection of the framework.

Figure S14. $Cd_2(HDA)_3(NO_3)_4$ structures projected along direction (a) [100], (b) [010], (c) [001], [d] stereographic projection of the framework.

(a)

Figure S15. The crystal structure of (a) $Cd(HDA)_2(NO_3)_2$, (b) $Cd_2(HDA)_3(NO_3)_4$, and (c) $Cu(HDA)_2(MeCN)_2 \cdot 2BF_4$ with the void spaces calculated by program Mercury¹ as contact surface with probe radius 0.8 Å and grid step 0.1 Å. There are no voids larger than 0.8 Å in radius, capable of absorbing guest molecules.

Figure S16. Change in the volume of the free voids calculated by Mercury¹ as contact surface with probe radius 0.3 Å and grid step 0.1 Å for (a) Cd(HDA)₂(NO₃)₂ (top left) phases α , β , γ and (b) phase δ ; (c) Cd₂(HDA)₃(NO₃)₄ phases α and β ; (d) Cu(HDA)₂(MeCN)₂ (bottom right).

(a) (b) (c)

Figure S17. $Cd(HDA)_2(NO_3)_2$ crystal at (a) 0.7 GPa, (b) 3.6 GPa in DAC as well as (c) the recovered single-crystal mounted on a nylon loop for the X-ray diffraction experiment at room-conditions. The unit-cell dimensions of the crystal before and after the compression are compared below:

Cd(HDA) ₂ (NO ₃) ₂	a (Å)	b (Å)	c (Å)	V (Å ³)
as-synthesized	9.7855(7)	9.7855(7)	21.071(3)	2017.7(4)
post-compressed	9.7589(4)	9.7589(4)	21.026(5)	2002.4 (8)

Figure S18. Reconstruction of reciprocal layers for the $Cd(HDA)_2(NO_3)_2$ crystal, showing decrease in the reflection intensities.

Figure S19. Reconstruction of reciprocal layers for the $Cd_2(HDA)_3(NO_3)_4$ crystal, showing decrease in the reflection intensities. 3.1 GPa 4.3 GPa 4.5 GPa

Figure S20. Reconstruction of reciprocal layers for the $Cu(HDA)_2(MeCN)_2$ · crystal, showing decrease in the reflection intensities.

Reference:

(1) Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.; Mccabe, P.; Pidcock, E.; Rodriguezmonge, L.; Taylor, R.; Streek, J. Van De; Wood, P. A. Mercury CSD 2 . 0 – New Features for the Visualization and Investigation of Crystal Structures. *J. Appl. Cryst.* **2008**, *41*, 466–470. https://doi.org/10.1107/S0021889807067908.

Table S1. Selected large volume changes at phase transitions and compressibilities of our coordinationpolymers and other compounds reported in the literature.

Material	Application	ΔV/V (%) at	Volume	Reference
		μc	(GPa ⁻¹) at 0.1 MPa	
Cd(HDA) ₂ (NO ₃) ₂	Shock-	(α→β) 5%	α 0.092(2)	This work
	absorber	at 1.1 GPa	β 0.027(3)	
		(β→γ) 1% at 2.0 GPa	γ 0.062(2)	
Cd ₂ (HDA) ₃ (NO ₃) ₄	Shock-	4% at 1.5	α 0.141(4)	This work
	absorber	GPa	β 0.043(2)	
Cu(HDA) ₂ (MeCN) ₂ ·2BF ₄	Shock- absorber	N/A	0.219(2)	This work
MIL53(AI)	Nano-shock	41% at 19	Theory prediction	Chem. Commun.,

	absorber	MPa			2014 , 50, 9462
MIL53(Cr)	Nano-damper	6% at 53.5	N/A		J. Phys. Chem. C
		MPa			2012 , 116, 13289-
					13295
CUK-1	Nano-springs	21% at 0.4	1	0.292(3)	Chem. Sci., 2021 , 12,
		GPa	11	0.068(3)	5682
MHy ₂ PbBr ₄	Photodetector	1% at 4.1	111	0.043(1)	Chem. Mater. 2022 ,
		GPa	IV	0.026(1)	34, 7867–7877
[FA]Mn(H ₂ POO) ₃	Solar-cell	2% at 3.9	α	0.030(1)	J. Phys. Chem. C
		GPa	γ	0.003(2)	2021, 125,26958-
					26966
AMU3·DMF	Sensor	2% at 0.4	α	0.128(3)	Mater. Adv. 2021 ,2,
		GPa	β	0.024(2)	4677-4684
AMU3·MeCN	Sensor	1% at 0.7	α	0.051(2)	Mater. Adv. 2021 ,2,
		GPa	β	0.005(2)	4677-4684
Ag ₃ [Co(CN) ₆]	Optical	16% at 0.19	1	0.152(2)	Proc. Natl. Acad. Sci.
	material	GPa	П	0.026(3)	2008, 105, 18708-
					18713
T[PrA][Mn(dca) ₃]	Barocaloric	1% at 6.89	N/A		Nat. Commun., 2017
		MPa			8, 15715
NPG	barocaloric	4.9%	N/A		Nat. Commun., 2019
					10, 1803

hase Phase		ß	αβ	α γ	α γ	β γ	β	, β	γβ	βγ
CDC rແພງຢູ່ໂອກັບmber		2262376	2202523847	2262323262348	2262340 2262349	2262341 226	2350262342	2262236521343	22003544	22 82643 53
Pressure		0.0001	0.2	0.5	0.85	1.1	1.25	1.4	1.5	1.65
Temperature (K)		293	293	293	293	293	293	293	293	293
Formula weight		234.42	234.42	234.26	233.32	234.42	234.42	234.42	234.42	234.42
Wavelength (Å)		0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal system		tetragonal	tetragonal	tetragonal	tetragonal	triclinic	triclinic	triclinic	triclinic	triclinic
Space group		141/a	14 ₁ /a	14 <u>1</u> /a	141/a	<i>р</i> 1	<i>p</i> 1	рl	рl	ρl
Unit cell dimensions	a (Å)	9.7855(7)	9.7210(7)	9.6225(8)	9.5693(6)	9.350(2)	9.369(2)	9.3296(18)	9.3399(16)	9.340(3)
	b (Å)	9.7855(7)	9.7210(7)	9.6225(8)	9.5693(6)	9.7253(18)	9.730(2)	9.719(3)	9.7227(16)	9.701(4)
	<i>c</i> (Å)	21.071(3)	21.012(2)	20.790(3)	20.504(3)	11.181(5)	11.176(3)	11.132(6)	11.104(3)	11.109(4)
	α (°)	90	90	90	90	110.90(3)	111.06(2)	110.81(4)	110.89(2)	111.06(4)
	в(°)	90	90	90	90	105.07(3)	105.360(20)	105.15(3)	105.022(19)	105.20(3)
	γ(°)	90	90	90	90	95.909(17)	95.987(19)	95.96(2)	96.004(14)	95.86(3)
Volume (ų)		2017.7(4)	1985.6(4)	1925.0(4)	1877.5(4)	895.3(5)	893.9(4)	888.7(6)	887.9(4)	884.6(6)
Z/Z'		8/0.5	8/0.5	8/0.5	8/0.5	4/2	4/2	4/2	4/2	4/2
Molecular volume (V/Z)	1	252.21	248.2	240.625	234.69	223.82	223.47	222.17	221.98	221.15
Calculated density (g/cr	n³)	1.543	1.568	1.617	1.651	1.709	1.742	1.752	1.754	1.760
Absorption (mm ⁻¹)		1.120	1.138	1.174	1.203	1.261	1.264	1.272	1.273	1.278
F(000)		968.0	968.0	967.0	963.0	468.0	484.0	484.0	484.0	484.0
Crystal size (mm)		$0.099 \times 0.067 \times 0.056$	$0.25 \times 0.16 \times 0.05$	$0.25 \times 0.16 \times 0.05$	$0.25\times0.16\times0.05$	$0.24\times0.15\times0.05$	$0.24\times0.15\times0.05$	$0.24 \times 0.15 \times 0.05$	$0.24 \times 0.15 \times 0.05$	0.24 × 0.15 × 0.05
2∂-range for data colled	tion (°)	7.046 to 57.566	8.386 to 52.606	7.158 to 52.85	7.216 to 59.988	4.592 to 54.042	4.13 to 56.774	6.898 to 51.33	4.596 to 56.574	4.15 to 56.496
Min/max indices: h, k, l		-13/13,-6/7,-13/27	-12/12,-5/6,-24/23	-9/9,-10/10, -24/24	-10/9,-11/11,-25/26	-11/11,-12/12,-9/9	-8/8,-11/11, -14/14	-11/11,-11/11,-11/11	-12/12,-12/12, -8/8	-7/7,-11/10,-13/13
Reflect. Collected/uniqu	Je	1809/949	4280/671	2434/586	3228/687	5566/852	15465/1139	5909/858	7141/891	6284/87
R _{int}		0.0270	0.1310	0.0383	0.0642	0.1353	0.1148	0.2850	0.1418	0.1620
Refinement method		Full-matrix least-squar	res on F ²							
Completeness (%)		84.3	69.5	62.8	64.0	35.6	40.05	25.8	34.7	35.8
Data/restrains/paramet	ters	949/1/68	671/6/68	586/0/68	687/0/62	852/400/226	1139/403/227	858/406/226	891/403/226	877/300/226
Goodness-of-fit on F ²		1.078	1.167	1.040	1.162	1.675	1.080	1.808	1.101	1.084
Final R1/wR ² (I>2σ1)		0.0457/0.0816	0.0771/0.1761	0.0322/0.0636	0.0669/0.1172	0.1154/0.3078	0.0806/0.1835	0.1980/0.4378	0.0851/0.2049	0.0866/0.2119
R1/wR ² (all data)		0.0726/0.0944	0.1322/0.2479	0.0501/0.0693	0.1133/0.1731	0.1691/0.3855	0.1078/0.2064	0.2897/0.5365	0.1307/0.2517	0.1071/0.2348
Largest diff. peak/hole	(e.Å ⁻³)	0.27/-0.29	0.51/-0.52	0.27/-0.24	0.69/-0.74	0.84/-0.90	0.57/-0.60	0.94/-0.89	0.71/-0.86	0.65/-0.80

Table S2. Crystallographic data of Cd(HDA)₂(NO₃)₂ phases α , β and γ .

 $w=1/(\sigma^2 F_o^2 + w_1^2 P^2 + w_2 P^2)$, where $P=(Max(F_o^2, 0) + 2^* F_c^2)$

Pressure		1.77	1.96	2.1	2.3	2.55	2.8	3.3	3.7
Temperature (K)		293	293	293	293	293	293	293	293
Formula weight		234.42	234.42	234.42	234.42	234.42	234.42	234.42	234.42
Wavelength (Å)		0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
Phase Crystal system		triclinic a	triclinic a	triclinic	α triclinic	triclinic	δtriclinicδ	triclinic a	triclinic
Space group		ρl	βÌ	ρl	ρĪ	рl	<i>р</i> 1	ρl	βĪ
Unit cell dimensions	a (Å)	9.319(3)	9.2950(18)	9.264(3)	9.234(2)	9.202(3)	9.188(2)	9.147(2)	9.127(2)
	<i>b</i> (Å)	9.7075(18)	9.6793(19)	9.585(3)	9.5879(16)	9.608(2)	9.5899(16)	9.5510(17)	9.5346(18)
	<i>c</i> (Å)	11.051(5)	10.957(3)	11.069(4)	10.970(5)	10.973(6)	10.926(4)	10.842(5)	10.805(5)
	α (°)	110.92(3)	110.80(2)	110.41(3)	110.44(3)	110.88(4)	110.87(2)	110.73(3)	110.62(3)
	в(°)	104.97(3)	104.87(2)	105.98(3)	106.00(3)	106.16(4)	106.04(3)	106.08(3)	106.02(3)
	γ(°)	96.149(18)	96.250(16)	97.17(3)	97.186(17)	97.29(2)	97.405(17)	97.435(17)	97.498(18)
Volume (ų)		879.9(5)	868.6(4)	858.6(5)	848.0(5)	842.5(6)	836.4(4)	823.5(5)	818.3(5)
Z/Z'		4/2	4/2	4/2	4/2	4/2	4/2	4/2	4/2
Molecular volume (V/Z)		219.98	217.15	214.65	212.0	210.62	209.10	205.87	204.57
Calculated density (g/cm ³)	1	1.770	1.793	1.813	1.836	1.848	1.862	1.883	1.899
Absorption (mm ⁻¹)		1.284	1.301	1.316	1.333	1.341	1.351	1.372	1.381
F(000)		484.0	484.0	484.0	484.0	484.0	484.0	484.0	484.0
Crystal size (mm)		0.24 × 0.15 × 0.05	0.24 × 0.15 × 0.05	0.24 × 0.15 × 0.05	$0.24 \times 0.15 \times 0.05$	0.24 × 0.15 × 0.05	0.24 × 0.15 × 0.05	0.24 × 0.15 × 0.05	0.24 × 0.15 × 0.05
2ϑ-range for data collection	on (°)	4.606 to 56.526	4.616 to 56.56	5.772 to 59.798	7.308 to 49.648	4.69 to 56.71	4.698 to 55.666	4.714 to 56.584	4.718 to 56.344
Min/max indices: h, k, l		-12/12,-12/12,-8/8	-12/12,-12/12,-8/8	-11/11,-9/10, -10/10	-10/10,-11/11,-9/9	-12/11,-12/12,-8/9	-11/11,-12/12,-8/8	-11/11,-12/12,-9/9	-11/11,-12/12,-9/9
Reflect. Collected/unique		6027/885	5986/858	5871/985	5773/665	5255/826	5631/788	6161/825	7462/806
R _{int}		0.0895	0.0810	0.1217	0.1092	0.1037	0.0932	0.0762	0.1696
Refinement method		Full-matrix least-squar	es on F ²						
Completeness (%)		34.1	34.6	25.7	22.8	34.7	34.2	35.3	35.8
Data/restrains/parameter	s	885/421/227	858/386/226	985/208/208	665/386/208	826/464/197	788/363/209	825/409/208	806/443/208
Goodness-of-fit on F ²		1.111	1.164	1.056	1.589	1.073	1.057	1.068	1.731
Final R1/wR ² (I>2 σ 1)		0.0949/0.2060	0.0888/0.2164	0.0732/0.1909	0.1111/0.3163	0.0957/0.2051	0.1094/0.2692	0.0879/0.1954	0.1337/0.3530
R1/wR ² (all data)		0.1599/0.2567	0.1438/0.2706	0.1497/0.2402	0.1506/0.3571	0.1652/0.2626	0.1402/0.3037	0.1206/0.2253	0.1802/0.4103
Largest diff. peak/hole (e./	Å-3)	0.75/-0.68	0.78/-0.87	0.34/-0.31	0.61/-0.83	0.83/-0.62	0.88/-0.67	0.83/-0.83	0.89/-1.36
			. // 3=	2 2452 452 1 5 4	(= 2 = 2 = 2 = 2)				

 $w=1/(\sigma^2 F_o^2 + w_1^2 * P^2 + w_2 * P)$, where $P=(Max(F_o^2, 0) + 2 * F_c^2)$

Table S2. Crystallographic data of Cd(HDA)₂(NO₃)₂ phases α and δ .

CCDC number		2262371	2262354	2262355	2262356	2262357	2262358
Pressure		0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
Phase Temperature (K)		α 293	250	200	β 150	100	β 100*
<u>CCDC number</u> Formula weight		2262359 234.42	2262360 234.42	2262361 234.42	2262362 468.83	2262363 468.83	2262364 234.42
Pressure Wavelength (Å)		8:9187 ₃	8: 1 1073	1.2 0:71073	<u>8:1</u> 1073	<u>ð</u> :71073	<u>4</u> .3 0:71073
Crystal system		tetragonal	tetragonal	tetragonal	triclinic	triclinic	tetragonal
Space group		14 ₁ /a	141/a	141/a	рĪ	рĪ	14 ₁ /a
Unit cell dimensions	a (Å)	9.7855(7)	9.6193(2)	9.5708(2)	9.9696(8)	9.9729(8)	9.5843(7)
	b (Å)	9.7855(7)	9.6193(2)	9.5708(2)	12.2010(9)	12.1703(10)	9.5843(7)
	<i>c</i> (Å)	21.071(3)	21.2771(8)	21.3382(7)	18.1134(16)	18.0586(17)	20.900(2)
	α (°)	90	90	90	74.552(7)	74.687(7)	90
	в(°)	90	90	90	74.701(7)	74.744(7)	90
	γ(°)	90	90	90	68.229(7)	68.239(7)	90
Volume (ų)		2017.7(4)	1968.79(11)	1954.58(10)	1938.4(3)	1929.7(3)	1919.9(3)
Z/Z'		8/0.5	8/0.5	8/0.5	8/4	8/4	8/0.5
Molecular volume (V/Z)		252.21	246.10	244.32	242.30	241.21	240.00
Calculated density (g/cm ³)		1.543	1.582	1.593	1.607	1.614	1.622
Absorption (mm ⁻¹)		1.120	1.148	1.156	1.166	1.171	1.177
F(000)		968.0	968.0	968.0	968.0	968.0	968.0
Crystal size (mm)		0.099 × 0.067 × 0.056	0.307 × 0.213 × 0.127	0.307 × 0.213 × 0.127	0.307 × 0.213 × 0.127	0.307 × 0.213 × 0.127	0.325 × 0.256 × 0.198
2ϑ -range for data collection (°)		7.046 to 57.566	4.648 to 61.302	4.664 to 61.208	5.422 to 52.746	4.664 to 61.304	7.166 to 56.718
Min/max indices: h, k, l		-13/13,-6/7,-13/27	-12/13,-13/13,-28/29	-12/13,-13/13, -28/29	-12/12,-15/15,-22/22	-14/13,-17/17,-24/25	-12/12,-10/12, -25/27
Reflect. Collected/unique		1809/949	12931/1449	12842/1444	19863/7845	23553/10332	5245/1155
R _{int}		0.0270	0.0330	0.0316	0.0687	0.0774	0.0358
Refinement method		Full-matrix least-squares on F ²					
Completeness (%)		84.3	100	100	99.2	99.2	99.1
Data/restrains/parameters		949/1/68	1449/0/68	1444/0/68	7845/12/451	10332/0/451	1155/31/68
Goodness-of-fit on F ²		1.078	1.071	1.059	1.088	1.088	1.180
Final R1/wR ² (I>2o1)		0.0457/0.0816	0.0261/0.0572	0.0212/0.0463	0.0862/0.2192	0.0939/0.2258	0.0713/0.1590
R1/wR ² (all data)		0.0726/0.0944	0.0337/0.0598	0.0269/0.0486	0.1280/0.2468	0.1538/0.2613	0.0775/0.1613
Largest diff. peak/hole (e.Å ⁻³)		0.27/-0.29	0.39/-0.21	0.31/-0.18	3.81/-1.14	4.95/-1.44	1.51/-0.83
			$w=1/(\sigma^2 F_o^2 + w)$	$v_1^{2*}P^2 + w_2^*P$), where $P = (Max(F_o^2))$	$(0)+2^*F_c^2)$		

*fast-cooled crystal

Table S3. Crystallographic data of $Cd_2(HDA)_3(NO_3)_4$ phases α and β .

Temperature (K)		293		293		293		293	293	293
Formula weight		410.73		410.73		410.73		410.73	410.73	410.73
Phase Wavelength (Å)	α	0.71073	α	0.71073	α	0.71073	α	0.71073 α	0.71073	0.71073
CCDC number Crystal system	226	2365 monoclinic	2262366	monoclinic	2262367	monoclinic	2262368	monoclinic 2262369	2262370 monoclinic	monoclinic
Space group		P21/n		P21/n		P21/n		P2 ₁	P2 ₁	P2 ₁
Unit cell dimensions	a (Å)	14.3304(4)		14.316(10)		14.276(14)		14.206(12)	14.188(11)	14.10(4)
	b (Å)	7.0034(2)		6.8838(4)		6.7318(5)		6.6183(4)	6.5088(3)	6.4726(15)
	<i>c</i> (Å)	16.3600(7)		15.7250(18)		15.218(2)		14.9354(14)	14.7051(11)	14.568(5)
	α (°)	90		90		90		90	90	90
	в(°)	97.033(3)		97.17(3)		96.72(4)		96.11(3)	95.70(3)	94.60(11)
	γ(°)	90		90		90		90	90	90
Volume (ų)		1629.56(10)		1537.5(11)		1452.5(14)		1396.2(12)	1351.2(10)	1325(4)
Z/Z'		4/1		4/1		4/1		4/1	4/1	4/1
Molecular volume (V/Z)		407.39		384.37		363.12		349.05	337.80	331.25
Calculated density (g/cm ³)		1.674		1.774		1.878		1.954	2.019	2.059
Absorption (mm ⁻¹)		1.373		1.455		1.540		1.602	1.655	1.688
F(000)		836.0		836.0		836.0		836.0	836.0	836.0
Crystal size (mm)		0.324 × 0.222 × 0.193		0.385 × 0.293 × 0	0.08	0.385 × 0.293	× 0.08	$0.385 \times 0.293 \times 0.08$	0.385 × 0.293 × 0.08	$0.385 \times 0.293 \times 0.08$
2ϑ-range for data collection (°)		5.728 to 56.624		5.222 to 52.998		3.702 to 53.33	4	5.486 to 53.508	5.568 to 53.32	3.868 to 49.408
Min/max indices: h, k, l		-17/15,-8/9,-19/17		-8/8,-8/8,-19/19		-8/8,-8/8, -18/	18	-7/7,-8/8,-18/18	-7/7,-8/8,-17/18	-7/7,-7/7, -17/17
Reflect. Collected/unique		11904/3524		12275/1061		11532/1001		11452/1834	10939/1726	8713/1508
R _{int}		0.0244		0.0727		0.0943		0.0821	0.0580	0.3401
Refinement method		Full-matrix least-squares of	on F ²							
Completeness (%)		99.9		35.3		35.0		33.3	32.9	33.1
Data/restrains/parameters		3524/6/190		1061/172/184		1001/151/190		1834/518/380	1726/716/379	1508/800/313
Goodness-of-fit on F ²		1.033		1.065		1.063		1.103	1.122	1.253
Final R1/wR ² (I>2σ1)		0.0369/0.0794		0.0479/0.1092		0.0524/0.1272		0.0523/0.1262	0.0658/0.1799	0.1558/0.3622
R1/wR ² (all data)		0.0529/0.0885		0.0842/0.1301		0.0848/0.1518		0.0807/0.1579	0.0915/0.2495	0.2921/0.4524
Largest diff. peak/hole (e.Å-3)		1.36/-0.73		0.51/-0.71		0.50/-0.41		0.40/-0.56	0.90/-1.36	0.82/-0.61

 $w=1/(\sigma^2 F_o^2 + w_1^2 P^2 + w_2 P^2)$, where $P=(Max(F_o^2, 0) + 2^* F_c^2)$

Table S4. Crystallographic data of Cu(HDA)₂(MeCN)₂·2BF₄.

Pressure		0.0001	0.15	0.4	0.7	1.0	0.0001	1.2*
Temperature (K)		293	293	293	293	293	100	293
Formula weight		551.68	551.68	551.68	551.68	551.68	551.68	551.68
Wavelength (Å)		0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal system		orthorhombic	orthorhombic	orthorhombic	orthorhombic	orthorhombic	orthorhombic	orthorhombic
Space group		Fddd	Fddd	Fddd	Fddd	Fddd	Fddd	Fddd
Unit cell dimensions	a (Å)	12.9608(7)	12.99(4)	13.19(3)	13.23(3)	13.220(10)	13.084(2)	13.26(4)
	b (Å)	14.1880(8)	13.946(12)	13.731(6)	13.517(6)	13.480(3)	13.9110(14)	13.340(9)
	<i>c</i> (Å)	27.6850(17)	27.191(7)	26.844(8)	26.501(5)	26.429(3)	27.113(3)	26.110(6)
Volume (ų)		5091.0(5)	4924(17)	4862(12)	4737(12)	4710(4)	4934.9(10)	4620(15)
Z/Z'		8/0.25	8/0.25	8/0.25	8/0.25	8/0.25	8/0.25	8/0.25
Molecular volume (V/Z)		636.37	615.5	607.75	592.12	588.75	616.86	577.5
Calculated density (g/cm ³)		1.443	1.488	1.507	1.547	1.556	1.488	
Absorption (mm ⁻¹)		0.933	0.963	0.976	1.001	1.007	0.962	
F(000)		2301.0	2296.0	2296.0	2296.0	2296.0	2300.0	
Crystal size (mm)		0.438 × 0.322 × 0.111	0.325 × 0.173 × 0.07	0.325 × 0.173 × 0.07	0.325 × 0.173 × 0.07	0.325 × 0.173 × 0.07	0.438 × 0.322 × 0.111	
2ϑ -range for data collection (°)		6.134 to 56.422	10.346 to 53.442	6.252 to 63.146	6.15 to 57.094	8.838 to 56.92	6.01 to 57.842	
Min/max indices: h, k, l		-16/16,-11/18,-36/20	-6/7,-15/16,-31/34	-6/6,-19/13, -28/28	-6/6,-13/13,-35/35	-6/6,-16/15,-35/35	-11/15,-18/18, -20/36	
Reflect. Collected/unique		3238/1347	2590/462	1551/516	2412/390	4151/497	3465/1277	
R _{int}		0.0278	0.3349	0.3341	0.3050	0.2052	0.0296	
Refinement method		Full-matrix least-squares on F	2					
Completeness (%)		99.7	39.5	38.1	34.2	38.6	90.1	
Data/restrains/parameters		1347/0/79	462/92/79	516/57/79	390/94/79	497/69/79	1277/0/79	
Goodness-of-fit on F ²		1.059	0.901	0.868	0.939	0.983	1.067	
Final R1/wR ² (I>2o1)		0.0533/0.1454	0.0921/0.1926	0.0887/0.1585	0.0869/0.2116	0.0770/0.1866	0.0477/0.1174	
R1/wR ² (all data)		0.0603/0.1547	0.2220/0.2579	0.3838/0.2732	0.2445/0.2934	0.2296/0.2656	0.0555/0.1229	
Largest diff. peak/hole (e.Å-3)		0.80/-0.46	0.21/-0.26	0.23/-0.20	0.19/-0.28	0.22/-0.21	0.89/-0.42	
			$w=1/(\sigma^2 F_o^2 +$	$w_1^{2*}P^2+w_2^*P$), where P=(Max	$x(F_o^2,0)+2^*F_c^2)$			

* The measurement at 1.2 GPa, due to the reduced reflections intensities caused by the partial amorphization of the sample, provides the unit-cell parameters only.

Table S5. Torsion angles of HDA linkers in Cd(HDA)₂(NO₃)₂ structures under pressure.

Pressure (GPa)	HDA	τ0 (°)	τ1 (°)	τ2 (°)	τ3 (°)	Conformation code
0.0001	Site A	172.34	151.88	61.54	180	TTG⁺T

	-					
	Site B	172.34	-168.77	-71.49	180	TTG ⁻ T
0.2	Site A	172.96	142.15	76.46	180	TTG⁺T
	Site B	172.96	-169.07	-71.14	180	TTG ⁻ T
0.5	Site A	171.23	155.44	58.14	180	TTG⁺T
	Site B	171.23	-167.26	-67.03	180	TTGT
0.85	Site A	170.24	160.77	41.38	180	TTG⁺T
	Site B	170.24	-165.47	-82.52	180	TTGT
1.1	HDA-1	170.32	176.97	63.85	180	TIG ⁺ T
	HDA-2	-169 37	176.57	158.89	180	ттт
	HDA-3	163.46	-177 93	-66 37	180	TIGT
	HDA-4	-178 27	59.67	48 72	180	TG*G*T
1 25	HDA-1	-179 5	175.64	58 79	180	TIG+T
1.25	HDA-2	-169 78	177.65	157.63	180	ттт
	HDA-2	162.12	-178.01	-62.4	180	TIGT
	HDA-4	-178 50	-178.01	-02.4	180	TG ⁺ G ⁺ T
1.4		-178.55	172.42	45.01	180	
1.4		174.02	173.42	149 72	180	
		-104.20	152.54	146.75	180	TICT
	HDA-3	107.89	100.78	-49.04	180	TC+C+T
1.5	HDA-4	-158.04	46.20	50.84	180	
1.5	HDA-1	1/8.47	165.88	58.76	180	
	HDA-2	-168.02	-179.88	160.84	180	1111
	HDA-3	156.14	1/8.28	-58.48	180	T G G T
	HDA-4	-175.59	47.27	64.09	180	IG'G'I
1.65	HDA-1	-1//.38	1/7.74	56.32	180	
	HDA-2	-1/0.4/	174.4	153.76	180	
	HDA-3	158.67	-1/3.98	-57.98	180	IIG'I
	HDA-4	-169.85	47.8	60.2	180	
1.77	HDA-1	177.3	179.13	49.58	180	TTG*T
	HDA-2	-161.44	-179.61	157.08	180	TTTT
	HDA-3	158.02	-179.48	-65.05	180	TTGT
	HDA-4	-177.6	55.41	58.86	180	TG⁺G⁺T
1.96	HDA-1	-179.15	176.03	59.42	180	TTG⁺T
	HDA-2	-171.27	179.89	159.36	180	тттт
	HDA-3	157.75	177.22	-61.5	180	TTG ⁻ T
	HDA-4	-176.68	56.91	58.35	180	TG⁺G⁺T
2.1	HDA-1	169.64	169.32	65.36	180	TTG ⁺ T
	HDA-2	-172.35	-178.84	177.37	180	тттт
	HDA-3	167.63	-178.12	-70.72	180	TTGT
	HDA-4	171.9	-58.72	-58.05	180	TG ⁻ G ⁻ T
2.3	HDA-1	173.05	161.79	61.74	180	TTG ⁺ T
	HDA-2	-172.36	172.96	168.96	180	тттт
	HDA-3	161.79	-173.32	-57.09	180	TTG ⁻ T
	HDA-4	160.74	-68.64	-41.74	180	TG ⁻ G ⁻ T
2.55	HDA-1	172.15	170.78	62.94	180	TTG ⁺ T
	HDA-2	-165.74	-177.79	157.96	180	TTTT
	HDA-3	165.07	-175.89	-57.18	180	TTG ⁻ T
	HDA-4	173.04	-55.74	-46.68	180	TG ⁻ G ⁻ T
2.8	HDA-1	176.41	178.95	63.61	180	TTG⁺T
	HDA-2	-156.99	-171.79	151.05	180	тттт
	HDA-3	165.29	-178.13	-57.43	180	TTG-T
	HDA-4	178.73	-64.68	-29.74	180	TG-G-T
3.3	HDA-1	174.8	171.13	63.14	180	TTG⁺T

	HDA-2	-147.02	-179.73	-166.69	180	тттт
	HDA-3	167.9	-177.37	-65.45	180	TTG ⁻ T
	HDA-4	168.32	-39.68	-54.54	180	TG-G-T
3.7	HDA-1	179.84	-178.01	60.61	180	TTG⁺T
	HDA-2	-150.83	-171.8	-172.57	180	тттт
	HDA-3	174.44	-172.09	-74.73	180	TTGT
	HDA-4	167.29	-50.6	-40.9	180	TG ⁻ G ⁻ T

Table S6. Torsion angles of HDA linkers in Cd(HDA)₂(NO₃)₂ structures under temperature. Inv indicate C_i symmetric HDA linkers.

Temperature (K)	HDA	τ0 (°)	τ1 (°)	τ2 (°)	τ3 (°)	τ4 (°)	τ5 (°)	τ6 (°)	Conformation code
298	Site A	171.43	152.67	62.63	180	inv	inv	inv	TTG⁺T
	Site B	171.43	-169.05	-68.01	180	inv	inv	inv	TTG ⁻ T
250	Site A	170.42	151.56	62.69	180	inv	inv	inv	TTG⁺T
	Site B	170.42	-169.84	-66.99	180	inv	inv	inv	TTG ⁻ T
200	Site A	171.43	152.67	62.63	180	inv	inv	inv	TTG⁺T
	Site B	171.43	-169.05	-68.01	180	inv	inv	inv	TTG ⁻ T
150	HDA-1	-173.07	172.07	60.03	-178.07	-63.08	-173.46	173.73	TTG⁺TG ⁻ TT
	HDA-2	-176.74	-177.38	-64.87	180	inv	inv	inv	TTG-T
	HDA-3	166.08	-178.07	-65.46	180	inv	inv	inv	TTG-T
	HDA-4	171.65	175.42	53.79	180	inv	inv	inv	TTG⁺T
	HDA-5	-176.54	177.2	-169.21	180	inv	inv	inv	TTTT
	HDA-6	-178.43	-71.04	-176.36	180	inv	inv	inv	TG ⁻ TT
	HDA-7	162.17	-66.75	178.75	180	inv	inv	inv	TG-TT
100	HDA-1	-173.82	171.69	61.42	-177.8	-64.03	-173.25	173.5	TTG⁺TG⁻TT
	HDA-2	-176.88	-178.77	-63.19	180	inv	inv	inv	TTG-T
	HDA-3	165.62	-177.88	-65.69	180	inv	inv	inv	TTG ⁻ T
	HDA-4	170.81	175.26	55.88	180	inv	inv	inv	TTG⁺T
	HDA-5	-177.61	177.03	-168.96	180	inv	inv	inv	TTTT
	HDA-6	-177.87	-71.00	-176.73	180	inv	inv	inv	TG ⁻ TT
	HDA-7	161.91	-67.74	178.95	180	inv	inv	inv	TG-TT
100 -fast cooling	Site A	172.4	151.63	62.4	180	inv	inv	inv	TTG⁺T
	Site B	172.4	-168.94	-71.22	180	inv	inv	inv	TTG-T

Table S7. Torsion angles of HDA linkers in $Cd_2(HDA)_3(NO_3)_4$ structures under pressure. Inv indicate C_i symmetric HDA linkers.

- ()		- (4)	. (11)	- (*)	- (1)	- (4)	- (4)	- (4)	
Pressure (GPa)	HDA	τ0 (°)	τ1 (°)	τ2 (°)	τ3 (°)	τ4 (°)	τ5 (°)	τ6 (°)	Conformation code
0.0001	HDA-1	-174.43	58.12	175.63	-74.64	176.29	-172.84	68.71	TG⁺TG⁻TTG⁺
	HDA-2	178.98	-176.24	-177.35	180	inv	inv	inv	TTTT
0.4	HDA-1	-172.33	56.4	176.67	-76.67	175.32	-170.61	70.42	TG⁺TG⁻TTG⁺
	HDA-2	178.53	-174.96	-177.41	180	inv	inv	inv	TTTT
1.2	HDA-1	-169.6	55.12	175.78	-76.5	176.48	-169.82	70.33	TG ⁺ TG ⁻ TTG ⁺

	HDA-2	177.55	-172.05	-177.63	180	inv	inv	inv	TTTT
2.1	HDA-1	-168.57	54.3	174.86	-75.86	176.14	-171.51	74.69	TG⁺TG ⁻ TTG ⁺
	HDA-2	172.97	-162.28	-175.6	-176.88	179.4	177.71	-178.13	TTTTTT
	HDA-3	164.79	-51.39	-176.5	75.39	-176.65	169.96	-69.88	TG ⁻ TG ⁺ TTG ⁻
3.1	HDA-1	-164.75	42.21	179.64	-65.83	175.77	-176.64	75.29	TG⁺TG⁻TTG⁺
	HDA-2	174.31	-150.95	-173.45	-175.71	-178.91	-179.57	178.85	TTTTTT
	HDA-3	159.1	-56.09	-179.09	79.66	-176.15	173.53	-74.13	TG ⁻ TG ⁺ TTG ⁻
4.3	HDA-1	-171.21	49.14	174.69	-75.15	171.21	-177.09	76.55	TG+TG-TTG+
	HDA-2	177.25	-124.48	-169.88	169.36	-175.72	171.13	172.2	TTTTTT
	HDA-3	176.05	-44.28	-160.91	80.71	169.59	148.25	-52.85	TG ⁻ TG ⁺ TTG ⁻

Table S8. Torsion angles of HDA linkers in Cu(HDA)₂(MeCN)₂·2BF₄ structures under pressure.

	1					
Pressure (GPa)/Temperature (K)	HDA	τ0 (°)	τ1 (°)	τ2 (°)	τ3 (°)	Conformation code
0.0001 / 298	HDA-1	165.22	177.25	176.91	180	TTTT
0.15 / 298	HDA-1	162.84	178.88	178.19	180	TTTT
0.4 / 298	HDA-1	161.25	177.58	-178.18	180	TTTT
0.7 / 298	HDA-1	165.14	174.17	166.76	180	TTTT
1.0 / 298	HDA-1	167.46	-179.08	173.6	180	TTTT
0.0001 / 100	HDA-1	163.98	-177.45	-176.02	180	TTTT