Supporting Information

In-situ Coupled Nickel-based Layered Double Hydroxides with MXene to Enhance the Supercapacitor Performance

Guorong Wang*+, Guiquan Liu+, Zhiliang Jin*

School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P.R.China

Corresponding author: <u>guorongwang@nun.edu.cn (G. R. Wang);</u> <u>zl-jin@nun.edu.cn (</u>Z. L. Jin) + equal contribution

Results and Discussion

1. Composition, Structures and Morphologies Characterization

Fig. S1. The EDX spectrum of (a) NiV-LDHs, (b) Ti_3C_2 @NiV-LDHs, (c) NiCo-LDHs and (d) Ti_3C_2 @NiCo-LDHs.

Fig. S2. Elements mapping of (a) NiV-LDHs, (b) $Ti_3C_2@NiV-LDHs$, (c) NiCo-LDHs and (d) $Ti_3C_2@$ NiCo-LDHs.

Fig. S3. The XPS spectra of the NiV-LDHs, Ti_3C_2 and the Ti_3C_2 @NiV-LDHs: (a) Survey spectrum, (b) C 1s, (c) C 1s, (d) O 1s, (e) O 1s, respectively. (f) Survey spectrum of NiCo-LDHs, Ti_3C_2 and Ti_3C_2 @NiCo-LDHs. (g) C 1s XPS spectrum of NiCo-LDHs and Ti_3C_2 @NiCo-LDHs. (h) C 1s XPS spectrum of Ti_3C_2 @NiCo-LDHs. (i) O 1s XPS spectrum of NiCo-LDHs and Ti_3C_2 @NiCo-LDHs. (j) O 1s XPS spectrum of Ti_3C_2 and Ti_3C_2 @NiCo-LDHs. (b) C 1s XPS spectrum of Ti_3C_2 @NiCo-LDHs. (c) D 1s XPS spectrum of Ti_3C_2 @NiCo-LDHs and Ti_3C_2 @NiCo-LDHs. (c) D 1s XPS spectrum of Ti_3C_2 NiCo-LDHs. (c) D 1s XPS spectrum of Ti_3C_2 NiCo-LDHs. (c) D 1s XPS spectrum of Ti_3C_2 NiCo-LDHs. (c) D 1s XPS spectr

2. Three-Electrode System

Fig. S4. (a) The shaded area represents the capacitance contribution of NiV-LDHs at 10 mV s⁻¹. (b) The shaded area indicates the capacitive contribution of $Ti_3C_2@NiV$ -LDHs at 10 mV s⁻¹. (c) The gray area represents the portion of the NiCo-LDHs surface control contribution. (d) The gray area represents the portion of the $Ti_3C_2@NiCo$ -LDHs surface control contribution.

Fig. S5. (a) The cyclic voltammetry characteristic curve of NiV-LDHs at 5 to 100 mV s⁻¹. (b) The CV curve of Ti₃C₂@NiV-LDHs at 5 to 100 mV s⁻¹. (c) Cyclic characteristics curve of the NiCo-LDHs tested. (d) Cyclic characteristics curve of the Ti₃C₂@NiCo-LDHs tested.

3. Two-Electrode System

Fig. S6. (a) Cyclic voltammetry characteristic curves of Ti₃C₂@NiV-LDHs//AC ASC at 50 mV s⁻¹ of different voltage windows. **(b)** Constant current charge-discharge curves of Ti₃C₂@NiV-LDHs//AC ASC at 2 A g⁻¹ to 10 A

g⁻¹. (c) Cyclic voltammetry curves of self-assembled Ti_3C_2 @NiCo-LDHs//AC soft package devices under different voltage windows. (d) Constant current charge-discharge curve of the Ti_3C_2 @NiCo-LDHs//AC device.

Fig. S7. (a) Charge transfer internal resistance curve of Ti_3C_2 @NiV-LDHs//AC ASC. (b) EIS curves of the Ti_3C_2 @NiCo-LDHs//AC device before and after long-term charge-discharge cycle test.