CsCu₂I₃ Thin Films Prepared by Different Deposition Methods for Ultraviolet Photodetectors with Imaging Capability

Xiaoxuan Li^{a‡}, Bin Xia^{a‡}, Lichun Zhang^{ab*}, Feifei Wang^a, Fengzhou Zhao^{a*}

a School of Physics and Optoelectronic Engineering, Ludong University, Yantai, 264025, China

b School of integrated circuits, Ludong University, Yantai, 264025, China

^{*} Corresponding author. Email-address: phyzlc@163.com Email-address: fzzhao@ustc.edu [‡] These authors contributed equally.

Theoretical details

The Vienna ab-initio simulation package (VASP) 6.1.2 code with the projectoraugmented-wave(PAW) potential are adopted to perform the first-principles calculations. The HSE06 hybrid functional is put to use in the calculations of the electronic properties for the dielectric function. There are 24 atoms in the unit cell. The $3\times3\times3\Gamma$ -centered *k*-mesh of Brillouin zone (BZ) are employed in integration, but the band structure are calculated with additional 8 special *k* points including 140 points. The energy cutoff of the plane-wave basis sets is 500 eV to ensure the calculations to reach convergence. The energy convergent criterion is 10^{-6} eV. In the relaxation calculation, all the force is smaller than 0.01 eV/Å for the equilibrium structures. By using the obtained $\varepsilon(\omega)$, we evaluate the optical absorption coefficient α with an equation as follows:

$$\alpha(\omega) = \sqrt{2}\omega_{\chi} / (\varepsilon_r^2(\omega) + \varepsilon_i^2(\omega))^{0.5} - \varepsilon_r(\omega)$$

Fig. S1 Schematic diagram for the fabrication of $CsCu_2I_3$ films by LACVD, SC, VTE and PLD

utilized in this work.

Fig. S2 FWHM of CsCu₂I₃ films by LACVD, SC, VTE and PLD.

Fig. S3 XRD patterns of $CsCu_2I_3/GaN (32^{\circ}-45^{\circ})$.

Fig. S4 SEM image of large-area films prepared by VTE.

Fig. S5 EDS spectrum of CsCu₂I₃ film prepared by VTE.

Fig. S6 Elemental mapping of $CsCu_2I_3$ film prepared by VTE.

Fig. S7 AFM images of CsCu₂I₃ films prepared by PLD, VTE, LACVD and SC.

Fig. S8 XPS spectra of CsCu₂I₃ film prepared by VTE: (a) total spectrum, (b) Cs 3d (c) Cu 2p (d)

I 3d.

Fig. S9 Self-trapped exciton effect of CsCu₂I₃.

Fig. S10 Optical band gap of CsCu₂I₃ films prepared by PLD, VTE, LACVD and SC.

Fig. S11 Detectivity of photodetector under different light intensity prepared by VTE.

Fig. S12 (a) PL stability and (b) Structural stability of CsCu₂I₃ film for 30 days storage in air, (c)

Thermal stability of CsCu₂I₃ film, (d) long-term storage stability of the CsCu₂I₃/GaN

heterojunction photodetector.

		Substrate Annealing		Laser	Base	
Preparation Methods	Substrate	Temperature	Treatment	Parameters	Pressure	
		(°C)	(°C, min)	(mJ, Hz)	(Pa)	
PLD	n-GaN	200		200, 5	1×10-6	
VTE	n-GaN	200	—	_	3×10-4	
LACVD	n-GaN	200		200, 5	0	
SC	n-GaN	—	200°C, 60	_	1×10 ⁵	

 Table S1. Preparation parameters for different methods.

Preparation	Device	Wavelength	R	D *	Bias	On/off	D-f
Technology	Structure	(nm)	(A W ⁻¹)	(×10 ¹² Jones)	(V)	ratio	Kei.
Antisolvent	Ni/CsCu ₂ I ₃ /Ni	340			-5		28
Antisolvent	Ag/CsCu ₂ I ₃ /Ag	350	0.052	0.093	3	188	29
VTE	Au/CsCu ₂ I ₃	340	0.049	2.49	2	3150	32
PLD	Cs ₃ Cu ₂ I ₅ /n-Si	280	0.0708	0.944	-1.3	130	33
SC	Cs ₃ Cu ₂ I ₅ /n-Si	200-1200	0.13	3.1	0	~1×10 ⁵	34
Solution	Au/CsCu ₂ I ₃ /Au	325	32.3	1.89	5	2600	35
Antisolvent	Au/CsCu ₂ I ₃ /Au	265	22.1	0.12	3	22	38
Antisolvent	$CsCu_2I_3$	365	0.27	6.38×10 ⁻⁴	2		39
Antisolvent	Ga ₂ O ₃ /CsCu ₂ I ₃	254	0.02	1×10-5	0	1×10 ⁵	40
SC	Cs ₃ Cu ₂ I ₅ /Au	200-325	17.8	1.12	5		41
SC	GaN-Cs ₃ Cu ₂ I ₅	300-370	0.28	1.4	-6	1.2×10 ⁵	42
Antisolvent	Cs ₃ Cu ₂ I ₅ /ITO	265	0.0649	0.69	0	142	43
SC	Cs ₃ Cu ₂ I ₅ /n-Si	200-1200	0.0836	2.1	0	3720	44
VTE	Ga ₂ O ₃ /Cs ₃ Cu ₂ I ₅	248		2.4×10 ⁻⁴	0	5.1×10 ⁴	45
PLD	CsCu ₂ I ₃ /n-Si	330	0.0071	0.26	0	2150	46
VTE	CsCu ₂ I ₃ /Ca ₂ Nb	250	81.3		-5		17
	$_{3-x}Ta_xO_{10}$					_	4/
Antisolvent	CsCu ₂ I ₃ /CuI	350	0.253	0.31	3	280	48
SC	CsCu ₂ I ₃ /GaN	300-350	0.37	18.3	0	325	49

 Table S2. Performance comparisons of perovskites ultraviolet photodetector.

Preparation	Device	Wavelength	R	D *	Bias	On/off	Dof
Technology	Structure	(nm)	(A W ⁻¹)	(×10 ¹² Jones)	(V)	ratio	Kei.
VTE	CsCu ₂ I ₃ /GaN	330-360	0.042	0.142	0	640	
PLD	CsCu ₂ I ₃ /GaN	330-360	0.0064	0.0548	0	1.3	This
LACVD	CsCu ₂ I ₃ /GaN	330-360	0.012	0.0497	0	1	work
SC	CsCu ₂ I ₃ /GaN	330-360	0.014	0.0591	0	61	

Matarial	Conduction Type	Carrier Concentration	Mobility	
Wateriai	Conduction Type	(cm ⁻³)	(cm ² Vs ⁻¹)	
GaN	n	1.01×10 ¹⁸	200	
CsCu ₂ I ₃	р	7.87×10 ¹⁴	9	

Table S3. Hall parameters of $CsCu_2I_3$ and GaN.