Supporting Information

Enhancing Radiation-Resistance of Amorphous Indium-Zinc-Oxide Thin-

Film Transistors by Group IV Transition Element Doping

Youngseok Kim,^a Myunggil Kim,^b Choongik Kim*^a

^a Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107,

Republic of Korea

^b School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea

E-mail: Choongik Kim (choongik@sogang.ac.kr)

Figure S1. Grazing-incidence X-ray diffraction (GIXRD) spectra of amorphous oxide semiconductor thin films before and after proton irradiation (5 MeV, 10¹³ cm⁻² dose): the thin films of InZnO, Ti-doped InZnO, Zr-doped InZnO, and Hf-doped InZnO (a) before and (b) after the proton irradiation.

Figure S2. Atomic force microscopy (AFM) images of the surfaces of amorphous oxide semiconductor (AOS) films before and after proton irradiation (5 MeV, 10^{13} cm⁻² dose): (a) InZnO, (b) Ti-doped InZnO, (c) Zr-doped InZnO, and (d) Hf-doped InZnO films before proton irradiation; (e) InZnO, (f) Ti-doped InZnO, (g) Zr-doped InZnO, and (h) Hf-doped InZnO films after proton radiation. R_q is the RMS (root-mean-square) roughness.

Figure S3. O1s spectra of (a) InZnO, (b) Ti-doped InZnO, (c) Zr-doped InZnO, and (d) Hf-doped InZnO from X-ray photoelectron spectroscopy (XPS) analysis of thin film before and after proton irradiation (5 MeV, 10¹³ cm⁻² dose).

Figure S4. Tauc plot spectra of amorphous oxide semiconductor thin films before and after 5 MeV proton irradiation with a dose of 10^{13} cm⁻²: (a) InZnO, (b) Ti-doped InZnO, (c) Zr-doped InZnO, and (d) Hf-doped InZnO before proton irradiation; (e) InZnO, (f) Ti-doped InZnO, (g) Zr-doped InZnO, and (h) Hf-doped InZnO after proton irradiation.

Figure S5. Schematic image of the energy band diagram which denotes the bandgap, ΔE_{CB} , and ΔE_{VB} .

Figure S6. XPS spectra measured near the valence band for amorphous oxide semiconductor thin films before and after 5 MeV proton irradiation with a dose of 10¹³ cm⁻²: (a) InZnO, (b) Ti-doped InZnO, (c) Zr-doped InZnO, and (d) Hf-doped InZnO before proton irradiation; (e) InZnO, (f) Ti-doped InZnO, (g) Zr-doped InZnO, and (h) Hf-doped InZnO after proton irradiation.

Figure S7. Transfer curve of amorphous oxide semiconductor thin-film transistors measured bidirectionally before proton irradiation: (a) InZnO TFT, (b) Ti-doped InZnO TFT, (c) Zr-doped InZnO TFT, and (d) Hf-doped InZnO TFT.

Figure S8. Output curves of amorphous oxide semiconductor thin-film transistors before and after proton irradiation (5 MeV, 10¹³ cm⁻² dose): (a) InZnO TFT, (b) Ti-doped InZnO TFT, (c) Zr-doped InZnO TFT, and (d) Hf-doped InZnO TFT before proton irradiation; (e) InZnO TFT, (f) Ti-doped InZnO TFT, (g) Zr-doped InZnO TFT, and (h) Hf-doped InZnO TFT after proton irradiation.

	Channel	Stress			Compositional	• V	
Year		Туре	Time (s)	Applied Voltage / Light Source	Percentage of Dopant (%)	$\Delta \mathbf{v}_{th}$ (V) ^a	Ref.
2013	Ti-doped InZnO	PBS ^a	1800	$V_{G} = 20 V, V_{D} =$ 10 V	14	0.2	[35]
	Zr-doped InZnO	PBS ^a	1800	$V_{G} = 20 V, V_{D} =$ 10 V	13	~ 2	
	Hf-doped InZnO	PBS ^a	1800	$V_{G} = 20 V, V_{D} =$ 10 V	18	~ 5	
2014	Zr-doped InZnO	PBS ^a	1000	$V_{G} = 20 V, V_{D} =$ 10 V	1	7.42	[36]
	Zr-doped InZnO	NBS ^b	1000	$V_{G} = -20 V, V_{D} =$ 10 V	1	-0.46	
2016	Hf-doped ZnSnO	NBIS ^c	10800	$V_{G} = -10 \text{ V} / 4000$ Lux	7.01	-1.9	[37]
2019	Zr-doped ZnSnO	NBIS°	1200	$V_G = -5 V / 2000$ Lux white light	2	-0.34	[38]
2021	Hf-doped InSnZnO	PBS ^a	3000	$V_G = 10 V$	5.09	~ 2	[28]
	Hf-doped InSnZnO	NBS ^b	3000	$V_G = -10 V$	5.09	~ -2	
2023	Ti-doped ZnSnO	PBSª	3600	$V_G = 20 V, V_D =$ 0.1 V	3.87	~ 13	[39]
	Ti-doped ZnSnO	NBS ^b	3600	$V_{G} = -20 V, V_{D} =$ 0.1 V	3.87	< 1	

Table S1. The previous research on the bias stress or bias illumination stress stability of thinfilm transistors based on amorphous oxide semiconductors doped with group IV transition elements.

^a Positive bias stress, ^b Negative bias stress, ^c Negative bias illumination stress