# Macrocyclic luminophores under confinement in a polymeric matrix - induction of large-Stokes-shift by interunit proton transfer

Paulina Jurek,<sup>a</sup> Michał F. Rode,<sup>\*b</sup> Marek P. Szymański,<sup>a</sup> Marzena Banasiewicz<sup>b</sup> and Agnieszka Szumna<sup>\*a</sup>

<sup>a</sup> Institute of Organic Chemistry Polish Academy of Sciences; Kasprzaka 44/52, 01-224 Warsaw (Poland)

E-mail:agnieszka.szumna@icho.edu.pl.

<sup>b</sup> Institute of Physics Polish Academy of Sciences; Aleja Lotników32/46, 02-668 Warsaw (Poland)

E-mail:mrode@ifpan.edu.pl

## **Supporting Information**

## Table of contents

| 1.    | General information                                   | S3  |
|-------|-------------------------------------------------------|-----|
| 2.    | Synthesis of luminophores                             | S3  |
| 3.    | Preparation of <b>PMMA-1a÷4c</b>                      | S18 |
| 3.1   | UV-Vis and FL spectra                                 | S18 |
| 4.    | Aggregation studies                                   | S26 |
| 4.1 I | n PMMA                                                | S26 |
| 4.2 I | n solution                                            | S27 |
| 4.2.2 | 1 Aggregation study – DMSO/water or THF/water mixture | S29 |
| 5.    | Theoretical calculations                              | S33 |
| 5.1   | Computational methods for tetramers                   | S33 |
| 5.2   | Computational methods for monomers                    | S39 |

### 1. General information

All solvents and chemicals used were purchased from Sigma Aldrich, TCI Europe N. V., Roth, Chem Impex Inc., and Euriso-top, were of reagent grade and were used without further purification.

<sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on Bruker 400 MHz and Varian 600 MHz or 500 MHz instruments with residual solvent signal as internal standard. All 2D NMR spectra were recorded at 298 K on Varian 600 MHz with residual solvent signal as internal standard.

IR spectra were measured on JASCO FT/IR-6200.

High resolution ESI mass spectra were recorded on a SYNAPT spectrometer.

Emission spectra of polymers were measured using the FS5 spectrofluorometer from Edinburgh Instruments.

UV-Vis spectra of polymers were measured using on UV-Vis-NIR Jasco-670.

Fluorescence quantum yields of polymers were determined with the FLS 1000 spectrofluorometer from Edinburgh Instruments using integrating sphere.

## 2. Synthesis of luminophores



Figure S1. Synthesis of macrocyclic luminophores 1d-e – 2d-e.

**1a:** Obtained by the literature procedure.<sup>1</sup> Analytical data in agreement with literature data.

**1b:** Obtained by the literature procedure.<sup>1</sup> Analytical data in agreement with literature data.

**1c:** Obtained by the literature procedure.<sup>1</sup> Analytical data in agreement with literature data.

1d:



Tetraformylresorcin[4]arene **S2** (0.106 mmol) and 3,4-diaminobenzoic acid **S3** (0.426 mmol) were dissolved in ethanol (5 ml), then  $Na_2S_2O_5$  solution (0.34 ml, 2.85 M) was added. The reaction mixture was stirred for 3 days at 80 °C. Then 1 M solution of HCl (2.12 ml) was added. The mixture was concentrated under reduced pressure. The precipitate was collected and washed with water and diethyl ether. Product **1d** was obtained as yellow solid, yield 98% (142 mg, 0.105 mmol).

<sup>1</sup>H NMR (600 MHz, [D<sub>6</sub>]DMSO, 298K) δ 8.30 (s, 4H), 7.89 (d, J = 8.6, 1.4 Hz, 4H), 7.86 (s, 4H), 7.75 (d, J = 8.5 Hz, 4H), 4.75 (t, J = 7.6 Hz, 4H), 2.36 (t, J = 6.6 Hz, 8H), 1.55 – 1.49 (m, J = 13.3, 6.7 Hz, 4H), 1.05 (d, J = 6.6 Hz, 24H).

<sup>13</sup>C NMR (150 MHz, [D<sub>6</sub>]DMSO, 298K) δ 167.4; 152.7; 152.3; 138.0; 134.2; 127.9; 125.5; 124.3; 116.3; 114.6; 100.5; 41.4; 31.2; 26.2; 22.7.

**Diffusion coefficient (DOSY)** 1.2·10<sup>-10</sup> m<sup>2</sup> s<sup>-1</sup> in [D<sub>6</sub>]DMSO, diameter **1.66 nm.** 

**HRMS (ESI):** m/z calcd for  $C_{76}H_{72}N_8O_{16}$ +Na 1375.4964[*M* + Na]<sup>+</sup>, found 1375.4991;  $|\Delta| = 2.0$  ppm.



Figure S2. <sup>1</sup>H NMR spectrum of **1d** (600 MHz, [D<sub>6</sub>]DMSO, 298 K).



Figure S4. DOSY-NMR spectrum of **1d** (600 MHz, [D<sub>6</sub>]DMSO, 298 K).



Figure S5. FT–IR (KBr) spectrum of 1d.





A derivative of phenylalanine **D-S4** 4 eq. and **1d** 1 eq. were dissolved in DMF and the mixture was cooled to 0°C. Then, OXYMA (4.8 eq.) and TEA (4.8 eq.) were added. After 20 min EDC·HCl (4.8 eq.) was added. The reaction mixture was allowed to warm to rt and stirred for 3 days. Then, the reaction mixture was evaporated under reduced pressure and ethyl acetate was added and the product was precipitated. The solid was washed with water, NaHCO<sub>3</sub>sat, water, citric acid (5% in H<sub>2</sub>O) and water. The synthesis was based on general procedure. The product **D-1e** was purified by chromatography column purification 2-10% MeOH:DCM. The yellow solid was obtained, yield 42% (62 mg, 0.031 mmol).

<sup>1</sup>**H NMR (600 MHz, [D<sub>6</sub>]DMSO, 298K)**  $\delta$  8.58 (d, *J* = 8.28 Hz, NH), 8.16 (s, 4H), 7.99 (q, *J* = 9.52, 4.97 Hz, NH) 7.83 (s, 4H), 7.75 (d, *J* = 8.67 Hz, 8H), 7.70 (d, *J* = 8.27 Hz, 8H), 7.33 (d, *J* = 7.78 Hz, 8H), 7.24 (t, *J* = 15.03, 7.60 Hz, 8H), 7.13 (t, *J* = 14.51, 7.60 Hz, 4H), 4.75 (t, *J* = 13.11, 6.65 Hz, 4H), 4.67 - 4.63 (m, 4H), 3.10 (dd, *J* = 13.47, 3.80 Hz, 4H), 3.00 (dd, *J* = 13.11, 11.05 Hz, 4H), 2.60 (d, *J* = 4.16 Hz, 12H), 2.36 (br t, 4H), 1.55-1.49 (m, 4H), 1.05 (d, *J* = 6.50 Hz, 24H).

<sup>13</sup>C NMR (150 MHz, [D<sub>6</sub>]DMSO, 298K) δ 171.7; 166.4; 152.9; 152.6; 151.9; 138.6; 136.4; 134.4; 129.2; 129.0; 128.0; 127.7; 126.1; 124.3; 124.1; 122.7; 114.5; 113.8; 100.5; 55.1; 41.3; 37.3; 31.2; 26.2; 25.6; 22.7.

**Diffusion coefficient (DOSY)**  $1.14 \cdot 10^{-10} \text{ m}^2 \text{ s}^{-1}$  in [D<sub>6</sub>]DMSO, diameter **1.75 nm**.

**HR(ESI)**: m/z calcd for  $C_{116}H_{118}N_{16}O_{16}$  1990.9800[*M* - 2H]<sup>2-</sup>; found 995.4442;  $|\Delta| = 0.84$  ppm.







Figure S7. <sup>13</sup>C NMR spectrum of **D-1d** (150 MHz, [D<sub>6</sub>]DMSO, 298 K).



Figure S8. DOSY-NMR spectrum of **D-1e** (600 MHz, [D<sub>6</sub>]DMSO, 298 K).



Figure S9. FT–IR (KBr) spectrum of **D-1e**.



A derivative of phenylalanine L-S4 4 eq. and 1d 1 eq. were dissolved

Figure S10. UV and ECD spectra in different solvents of **D-1e**.

L-1e:



Figure S11. UV and ECD spectra in different solvents of L-1e.

**2a:** Obtained by the literature procedure.<sup>1</sup> Analytical data in agreement with literature data.

**2b:** Obtained by the literature procedure.<sup>1</sup> Analytical data in agreement with literature data.

**2c:** Obtained by the literature procedure.<sup>1</sup> Analytical data in agreement with literature data.

2d:



Tetraformylresorcin[4]arene **S6** (0.106 mmol) and 3,4-diaminobenzoic acid **S3** (0.426 mmol) were dissolved in ethanol (5 ml), then  $Na_2S_2O_5$  solution (0.34 ml, 2.85 M) was added. The reaction mixture was stirred for 3 days at 80 °C. Then 1 M solution of HCl (2.12 ml) was added. The precipitate was collected and washed with water and diethyl ether. Product **2d** was obtained as white solid, yield 82% (46 mg, 0.0328 mmol).

<sup>1</sup>**H NMR (600 MHz, [D<sub>6</sub>]DMSO, 298 K)**  $\delta$  8.12 (s, 4H), 7.99 (s, 4H), 7.79 (d, *J* = 8.50 Hz, 4H), 7.59 (d, *J* = 7.72 Hz, 4H), 5.34 (d, *J* = 7.61 Hz, 4H), 4.97 (d, *J* = 7.67 Hz, 4H), 4.56 (d, *J* = 7.35 Hz, 4H), 2.46 (overlay with DMSO, 8H), 1.65- 1.58 (m, 4H), 1.08 (d, *J* = 6.25 Hz, 24H).

<sup>13</sup>C NMR (150 MHz, [D<sub>6</sub>]DMSO, **298** K) δ 187.2; 168.2; 153.1; 148.1; 139.1; 124.8; 124.6;123.7; 120.5; 100.2; 99.9; 38.5; 35.0; 26.6; 23.1.

**Diffusion coefficient (DOSY)**  $1.5 \cdot 10^{-10}$  m<sup>2</sup> s<sup>-1</sup> in [D<sub>6</sub>]DMSO, diameter 1.33 nm.

**HRMS (ESI):** m/z calcd for  $C_{80}H_{72}N_8O_{16}$ +H: 1401.5145[M + H]<sup>+</sup>; found 1401.5161;  $|\Delta|$  = 1.1 ppm.



Figure S12. <sup>1</sup>H NMR spectrum of **2d** (600 MHz, [D<sub>6</sub>]DMSO, 298 K).



Figure S14. DOSY-NMR spectrum of 2d (600 MHz, [D<sub>6</sub>]DMSO, 298 K).



Figure S15. FT–IR (KBr) spectrum of 2d.

D-2e:



A derivative of phenylalanine **D-S4** 4 eq. and **2d** 1 eq. were dissolved in DMF and the mixture was cooled to 0°C. Then, OXYMA (4.8 eq.) and TEA (4.8 eq.) were added. After 20 min EDC·HCl (4.8 eq.) was added. The reaction mixture was allowed to warm to rt and stirred for 3 days. Then, the reaction mixture was evaporated under reduced pressure and ethyl acetate was added and the product was precipitated. The solid was washed with water, NaHCO<sub>3</sub>sat, water, citric acid (5% in H<sub>2</sub>O) and water. The synthesis was based on general procedure. The product **D-2e** was obtained as white solid, yield 64 % (47 mg, 0.023 mmol).

<sup>1</sup>**H NMR (600 MHz, [D**<sub>6</sub>]**DMSO, 298K) \delta** (broad spectrum) 12.65 (NH), 8.54 (s, NH), 8.17 (s, 4H), 7.97 (s, 4H), 7.95 (br s, 2H), 7.91 (br s, 2H), 7.66 (br q, NH), 7.60 (m, 2H) 7.44 (m, 2H), 7.29 (br d, 8H), 7.20 (br t, 8H), 7.09 (br t, 4H), 5.33-5.26 (m, 4H), 4.98 (br t, 4H), 4.66 (br t, 4H), 4.54 (br d, *J* = 18.74 Hz, 4H), 3.08 (br dd, 4H), 2.99 (br dd, 4H), 2.59 (br d, 12H), 2.45 (br t, 4H), 1.64-1.59 (m, 4H), 1.08 (br d, 24H).

<sup>13</sup>C NMR (150 MHz, [D<sub>6</sub>]DMSO, 298K) δ 171.8; 166.3; 152.6; 147.6; 146.8; 145.2; 142.5; 138.6; 136.2; 133.4; 129.0; 128.2; 127.9; 126.0; 124.0; 122.4; 120.1; 118.4; 118.2; 111.2, 110.9; 99.6; 54.9; 38.0; 37.2; 34.6; 26.1; 25.6; 22.6.

**Diffusion coefficient (DOSY)**  $1.34 \cdot 10^{-10} \text{ m}^2 \text{ s}^{-1}$  in [D<sub>6</sub>]DMSO, diameter **1.49 nm**.

**HR MS (ESI):** m/z calcd for  $C_{120}H_{122}N_{16}O_{16}$  2042.9214[*M* - 2H]<sup>2-</sup>, found 1021.4622;  $|\Delta| = 1.48$  ppm.



Figure S16. <sup>1</sup>H NMR spectrum of **D-2e** (600 MHz, [D<sub>6</sub>]DMSO, 298 K).



Figure S17. <sup>13</sup>C NMR spectrum of **D-2e** (150 MHz, [D<sub>6</sub>]DMSO, 298 K).



Figure S18. DOSY-NMR spectrum of **D-2e** (600 MHz, [D<sub>6</sub>]DMSO, 298 K).



Figure S19. FT–IR (KBr) spectrum of D-2e.



Figure S20. UV and ECD spectra in different solvents of **D-2e**.



Figure S21. UV and ECD spectra in different solvents of L-2e.

3a: Obtained by the literature procedure.<sup>1</sup> Analytical data in agreement with literature data.
3b: Obtained by the literature procedure.<sup>1</sup> Analytical data in agreement with literature data.
3c: Obtained by the literature procedure.<sup>1</sup> Analytical data in agreement with literature data.
4a: Obtained by the literature procedure.<sup>1</sup> Analytical data in agreement with literature data.

**4b**: Obtained by the literature procedure.<sup>1</sup> Analytical data in agreement with literature data.

**4c:** Obtained by the literature procedure.<sup>1</sup> Analytical data in agreement with literature data.

#### 3. Preparation of PMMA-1a÷4c

**Method A:** To a mixture of methyl methacrylate (MMA, 2ml) and benzoyl peroxide (10 mg) in a 4 ml sealed vial a luminophore (**1a÷4c**, 0.4 mg) was added. The mixture was sonicated for 30 s and then heated at 80 °C for 30 minutes, then at 40 °C for 16 h and, finally, at 90 °C for 4 h. After that period the samples were opened and kept at 60 °C for 2 days to dry. The vials were removed by breaking the glass and the samples were analyzed.

**Method B:** To a mixture of methyl methacrylate (MMA, 4 ml) and benzoyl peroxide (20 mg) in a 4 ml sealed vial a luminophore (**1a**÷**4c**, 0.8 mg) was added. The mixture was sonicated for 30 s and then heated at 80 °C for 1 hour. When the mixture became a gel, it was poured onto a flat glass vial. After evaporation of the residual methyl methacrylate, the fluorescent polymer was obtained in the form of a thin plate.



Figure S22. FL and UV properties of **1a**: FL and UV spectra in solution (blue line, C =  $4.0 \cdot 10^{-6}$  M,  $\lambda_{ex} = 350$  nm), FL and UV spectra in PMMA (red line, C = 0.2%,  $\lambda_{ex} = 320$  nm); a) **PMMA-1a** under ambient light; b) **PMMA-1a** under UV light.



Figure S23. FL and UV properties of **1b**: FL and UV spectra in solution (blue line, C =  $4.0 \cdot 10^{-6}$  M,  $\lambda_{ex} = 310$  nm), FL and UV spectra in PMMA (red line, C = 0.2%,  $\lambda_{ex} = 310$  nm); a) **PMMA-1b** under ambient light; b) **PMMA-1b** under UV light.



Figure S24. FL and UV properties of **1c**: FL and UV spectra in solution (blue line, C =  $4.0 \cdot 10^{-6}$  M,  $\lambda_{ex} = 350$  nm), FL and UV spectra in PMMA (red line, C = 0.2%,  $\lambda_{ex} = 350$  nm); a) **PMMA-1c** under ambient light; b) **PMMA-1c** under UV light.



Figure S25. FL and UV properties of **1d**: FL and UV spectra in solution (blue line, C =  $4.0 \cdot 10^{-6}$  M,  $\lambda_{ex} = 350$  nm), FL and UV spectra in PMMA (red line, C = 0.2%,  $\lambda_{ex} = 310$  nm); a) **PMMA-1d** under ambient light; b) **PMMA-1d** under UV light.



Figure S26. FL and UV properties of **D-1e**: FL and UV spectra in solution (blue line, C =  $4.0 \cdot 10^{-6}$  M,  $\lambda_{ex} = 320$  nm), FL and UV spectra in PMMA (red line, C = 0.2%,  $\lambda_{ex} = 320$  nm); a) **PMMA-D-1e** under ambient light; b) **PMMA-D-1e** under UV light.



Figure S27. FL and UV properties of **2a**: FL and UV spectra in solution (blue line, C =  $4.0 \cdot 10^{-6}$  M,  $\lambda_{ex} = 320$  nm), FL and UV spectra in PMMA (red line, C = 0.2%,  $\lambda_{ex} = 320$  nm); a) **PMMA-2a** under ambient light; b) **PMMA-2a** under UV light.



Figure S28. FL and UV properties of **2b**: FL and UV spectra in solution (blue line, C =  $4.0 \cdot 10^{-6}$  M,  $\lambda_{ex} = 290$  nm), FL and UV spectra in PMMA (red line, C = 0.2%,  $\lambda_{ex} = 290$  nm); a) **PMMA-2b** under ambient light; b) **PMMA-2b** under UV light.



Figure S29. FL and UV properties of **2c**: FL and UV spectra in solution (blue line, C =  $4.0 \cdot 10^{-6}$  M,  $\lambda_{ex} = 310$  nm), FL and UV spectra in PMMA (red line, C = 0.2%,  $\lambda_{ex} = 310$  nm); a) **PMMA-2c** under ambient light; b) **PMMA-2c** under UV light.



Figure S30. FL and UV properties of **2d**: FL and UV spectra in solution (blue line, C =  $4.0 \cdot 10^{-6}$  M,  $\lambda_{ex} = 290$  nm), FL and UV spectra in PMMA (red line, C = 0.2%,  $\lambda_{ex} = 290$  nm); a) **PMMA-2d** under ambient light; b) **PMMA-2d** under UV light.



Figure S31. FL and UV properties of **D-2e**: FL and UV spectra in solution (blue line, C =  $4.0 \cdot 10^{-6}$  M,  $\lambda_{ex} = 290$  nm), FL and UV spectra in PMMA (red line, C = 0.2%,  $\lambda_{ex} = 290$  nm); a) **PMMA-D-2e** under ambient light; b) **PMMA-D-2e** under UV light.



Figure S32. FL and UV properties of **3a**: FL and UV spectra in solution (blue line, C =  $1.6 \cdot 10^{-5}$  M,  $\lambda_{ex} = 356$  nm), FL and UV spectra in PMMA (red line, C = 0.2%,  $\lambda_{ex} = 310$  nm); a) **PMMA-3a** under ambient light; b) **PMMA-3a** under UV light.



Figure S33. FL and UV properties of **3b**: FL and UV spectra in solution (blue line, C =  $1.6 \cdot 10^{-5}$  M,  $\lambda_{ex} = 310$  nm), FL and UV spectra in PMMA (red line, C = 0.2%,  $\lambda_{ex} = 310$  nm); a) **PMMA-3b** under ambient light; b) **PMMA-3b** under UV light.



Figure S34. FL and UV properties of **3c**: FL and UV spectra in solution (blue line, C =  $1.6 \cdot 10^{-5}$  M,  $\lambda_{ex}$  = 330 nm), FL and UV spectra in PMMA (red line, C = 0.2%,  $\lambda_{ex}$  = 330 nm); a) **PMMA-3c** under ambient light; b) **PMMA-3c** under UV light.



Figure S35. FL and UV properties of **4a**: FL and UV spectra in solution (blue line, C =  $1.6 \cdot 10^{-5}$  M,  $\lambda_{ex}$  = 310 nm), FL and UV spectra in PMMA (red line, C = 0.2%,  $\lambda_{ex}$  = 310 nm); a) **PMMA-4a** under ambient light; b) **PMMA-4a** under UV light.



Figure S36. FL and UV properties of **4b**: FL and UV spectra in solution (blue line, C =  $1.6 \cdot 10^{-5}$  M,  $\lambda_{ex} = 290$  nm), FL and UV spectra in PMMA (red line, C = 0.2%,  $\lambda_{ex} = 290$  nm); a) **PMMA-4b** under ambient light; b) **PMMA-4b** under UV light.



Figure S37. FL and UV properties of **4c**: FL and UV spectra in solution (blue line, C =  $1.6 \cdot 10^{-5}$  M,  $\lambda_{ex} = 290$  nm), FL and UV spectra in PMMA (red line, C = 0.2%,  $\lambda_{ex} = 290$  nm); a) **PMMA-4c** under ambient light; b) **PMMA-4c** under UV light.

#### 4. Aggregation studies



Figure S38. a) Normalized FL spectra of **PMMA-2a** with different concentration of **2a** in polymer,  $\lambda_{ex}$  = 320 nm; b) Photos of **PMMA-2a** with different amount of compound **2a**: A = 0.025 mg/ml, B = 0.05 mg/ml, C = 0.1 mg/ml, D = 0.2 mg/ml, E = 0.3 mg/ml, F = 0.4 mg/ml, g = 0.5 mg/ml.

#### 4.1 In PMMA





Figure S39. a) UV spectra of **2a** in THF; b) FL spectra of **2a** in THF,  $\lambda_{ex}$  = 320 nm.



Figure S40. a) UV spectrum, FL spectrum  $\lambda_{ex}$  = 320 nm, and excitation spectra of **2a** in THF (C = 4.0·10<sup>-6</sup> M); b) UV spectra, FL spectra  $\lambda_{ex}$  = 320 nm spectra of **2a** in THF (C = 4.0·10<sup>-6</sup> M) after argon or oxygen bubbled; c) UV spectra, FL spectra  $\lambda_{ex}$  = 320 nm spectra of **2a** in THF (C = 4.0·10<sup>-6</sup> M) after argon or oxyden bubbled – normalized;





Figure S41. FL spectra of **2a** in DMSO/water mixture (C =  $4.0 \cdot 10^{-6}$  M,  $\lambda_{ex}$  = 320 nm).



Figure S42. FL spectra of **2a** in THF/water mixture (C =  $4.0 \cdot 10^{-6}$  M,  $\lambda_{ex}$  = 320 nm).







Figure S44. FL spectra of **2c** in DMSO/water mixture (C =  $4.0 \cdot 10^{-6}$  M,  $\lambda_{ex}$  = 310 nm).



Figure S45. FL spectra of **2c** in THF/water mixture (C =  $4.0 \cdot 10^{-6}$  M,  $\lambda_{ex}$  = 310 nm).



Figure S46. FL spectra of **2d** in DMSO/water mixture (C =  $4.0 \cdot 10^{-6}$  M,  $\lambda_{ex}$  = 290 nm).



Figure S47. FL spectra of **D-2e** in DMSO/water mixture (C =  $4.0 \cdot 10^{-6}$  M,  $\lambda_{ex}$  = 290 nm).



Figure S48. FL spectra of **3a** in DMSO/water mixture (C =  $1.6 \cdot 10^{-5}$  M,  $\lambda_{ex}$  = 356 nm).











Figure S51. FL spectra of **4a** in DMSO/water mixture (C =  $1.6 \cdot 10^{-5}$  M,  $\lambda_{ex}$  = 310 nm).



Figure S52. FL spectra of **4b** in DMSO/water mixture (C =  $1.6 \cdot 10^{-5}$  M,  $\lambda_{ex}$  = 290 nm).



Figure S53. FL spectra of **4c** in DMSO/water mixture (C =  $1.6 \cdot 10^{-5}$  M,  $\lambda_{ex}$  = 330 nm).

#### 5. Theoretical calculations

#### 5.1 Computational methods for tetramers

All calculations for cavitands in its neutral (**N**-tautomer) and charged (**C**-tautomer) forms were performed within the density functional theory (DFT) approach using Gaussian 16 program suite.<sup>2</sup> Geometry was optimized with the B3LYP functional, employing the 6-31++G(D,P) basis set. Solvent effects were considered within the SMD model approach to model the interaction with the solvent. Vertical excitation energies were determined at the WB97XD/6-31++G(D,P) theory level by means of the time-dependent DFT (TD DFT) approach. The UV absorption spectra were next simulated by overlapping Gaussian functions for each transition where the width of the band at 1/e height is fixed at 0.2 eV and the resulting intensities of the combined spectra were scaled to the experimental values.

Atomic coordinates for calculated geometries of cavitands (solvent: THF)

#### N-tautomer

## Number of imaginary frequencies 0

| Syn | nbol X      | Y Z         | 2           |
|-----|-------------|-------------|-------------|
| 0   | -4.45828600 | -1.61132200 | -2.12474402 |
| 0   | 3.12847000  | 3.57095600  | -2.09650602 |
| 0   | -1.61132200 | 4.45828600  | -2.12474402 |
| 0   | -3.57095600 | 3.12847000  | -2.09650602 |
| 0   | 3.57095600  | -3.12847000 | -2.09650602 |
| 0   | 4.45828600  | 1.61132200  | -2.12474402 |
| 0   | 1.61132200  | -4.45828600 | -2.12474402 |
| 0   | -3.12847000 | -3.57095600 | -2.09650602 |
| С   | 3.67912200  | 2.48906300  | -1.33455702 |
| н   | 2.88348200  | 1.94721400  | -0.81863402 |
| н   | 4.36859800  | 2.95379300  | -0.63110902 |
| С   | -2.48906300 | 3.67912200  | -1.33455702 |
| н   | -2.95379300 | 4.36859800  | -0.63110902 |
| н   | -1.94721400 | 2.88348200  | -0.81863402 |
| С   | 2.48906300  | -3.67912200 | -1.33455702 |
| н   | 1.94721400  | -2.88348200 | -0.81863402 |
| н   | 2.95379300  | -4.36859800 | -0.63110902 |
| С   | -3.67912200 | -2.48906300 | -1.33455702 |
| Н   | -2.88348200 | -1.94721400 | -0.81863402 |
| н   | -4.36859800 | -2.95379300 | -0.63110902 |
| С   | -2.71510600 | 1.76675600  | -3.88683102 |
| С   | -0.50242500 | -2.61777400 | -4.47467902 |
| н   | -0.40478000 | -2.08907900 | -5.41952302 |
| С   | 3.16353300  | 0.64033400  | -3.88608402 |
| С   | -2.01266100 | 2.96285100  | -4.50537902 |
| н   | -2.61737300 | 3.86334700  | -4.36736202 |
| Н   | -1.89825200 | 2.79100300  | -5.57901202 |

| С | 3.84063800  | 0.50242500  | -2.66674602 |
|---|-------------|-------------|-------------|
| С | 1.76675600  | 2.71510600  | -3.88683102 |
| С | -3.84063800 | -0.50242500 | -2.66674602 |
| С | -2.61777400 | 0.50242500  | -4.47467902 |
| Н | -2.08907900 | 0.40478000  | -5.41952302 |
| С | 1.87898200  | 3.40384800  | -2.67198602 |
| С | -0.50242500 | 3.84063800  | -2.66674602 |
| С | 0.50242500  | -3.84063800 | -2.66674602 |
| С | 2.61777400  | -0.50242500 | -4.47467902 |
| Н | 2.08907900  | -0.40478000 | -5.41952302 |
| С | -3.40384800 | 1.87898200  | -2.67198602 |
| С | -1.76675600 | -2.71510600 | -3.88683102 |
| С | 2.71510600  | -1.76675600 | -3.88683102 |
| С | 0.50242500  | 2.61777400  | -4.47467902 |
| Н | 0.40478000  | 2.08907900  | -5.41952302 |
| С | 3.98338900  | -0.75534900 | -2.03770302 |
| С | -2.96285100 | -2.01266100 | -4.50537902 |
| Н | -3.86334700 | -2.61737300 | -4.36736202 |
| Н | -2.79100300 | -1.89825200 | -5.57901202 |
| С | 0.64033400  | -3.16353300 | -3.88608402 |
| С | -1.87898200 | -3.40384800 | -2.67198602 |
| С | -0.75534900 | -3.98338900 | -2.03770302 |
| С | -0.64033400 | 3.16353300  | -3.88608402 |
| С | 2.96285100  | 2.01266100  | -4.50537902 |
| Н | 3.86334700  | 2.61737300  | -4.36736202 |
| Н | 2.79100300  | 1.89825200  | -5.57901202 |
| С | -3.98338900 | 0.75534900  | -2.03770302 |

| С | -3.16353300 | -0.64033400 | -3.88608402 | C |   | -2.05573300 | -7.19484000 | 2.86784098  |
|---|-------------|-------------|-------------|---|---|-------------|-------------|-------------|
| С | 2.01266100  | -2.96285100 | -4.50537902 | Н | ł | -3.52362100 | -7.23803800 | 1.25836298  |
| Н | 2.61737300  | -3.86334700 | -4.36736202 | C |   | -4.70389700 | 0.88605800  | -0.75474202 |
| Н | 1.89825200  | -2.79100300 | -5.57901202 | C |   | -5.49578800 | 0.53200500  | 1.22210398  |
| С | 3.40384800  | -1.87898200 | -2.67198602 | C |   | -6.01453800 | 1.79888300  | 0.80167598  |
| С | 0.75534900  | 3.98338900  | -2.03770302 | С |   | -5.82271900 | 0.02268400  | 2.46796398  |
| С | 0.88605800  | 4.70389700  | -0.75474202 | С |   | -6.85019400 | 2.56464200  | 1.58978898  |
| С | 0.53200500  | 5.49578800  | 1.22210398  | С |   | -6.67708400 | 0.77656400  | 3.30924198  |
| С | 1.79888300  | 6.01453800  | 0.80167598  | н | ł | -5.43454900 | -0.93625100 | 2.79997498  |
| С | 0.02268400  | 5.82271900  | 2.46796398  | С |   | -7.19484000 | 2.05573300  | 2.86784098  |
| С | 2.56464200  | 6.85019400  | 1.58978898  | н | ł | -7.23803800 | 3.52362100  | 1.25836298  |
| С | 0.77656400  | 6.67708400  | 3.30924198  | Ν | 1 | 1.98267400  | 5.48795800  | -0.46119202 |
| Н | -0.93625100 | 5.43454900  | 2.79997498  | Ν | 1 | -0.00035300 | 4.68839400  | 0.22519298  |
| С | 2.05573300  | 7.19484000  | 2.86784098  | С |   | 0.30209800  | 7.04925800  | 4.60471998  |
| Н | 3.52362100  | 7.23803800  | 1.25836298  | С |   | 2.78249400  | 8.05334200  | 3.74785598  |
| С | 4.70389700  | -0.88605800 | -0.75474202 | С |   | 2.28922300  | 8.38742200  | 4.98850698  |
| С | 5.49578800  | -0.53200500 | 1.22210398  | н | ł | 2.85929500  | 9.04183600  | 5.64225198  |
| С | 6.01453800  | -1.79888300 | 0.80167598  | С |   | 1.03335100  | 7.87920900  | 5.42289398  |
| С | 5.82271900  | -0.02268400 | 2.46796398  | н | ł | 0.65431000  | 8.14951400  | 6.40456398  |
| С | 6.85019400  | -2.56464200 | 1.58978898  | н | ł | -0.65771200 | 6.65859600  | 4.93401798  |
| С | 6.67708400  | -0.77656400 | 3.30924198  | н | ł | 3.74249200  | 8.44139600  | 3.41590798  |
| Н | 5.43454900  | 0.93625100  | 2.79997498  | Ν | J | 4.68839400  | 0.00035300  | 0.22519298  |
| С | 7.19484000  | -2.05573300 | 2.86784098  | Ν | J | 5.48795800  | -1.98267400 | -0.46119202 |
| Н | 7.23803800  | -3.52362100 | 1.25836298  | C |   | 7.04925800  | -0.30209800 | 4.60471998  |
| С | -0.88605800 | -4.70389700 | -0.75474202 | C |   | 7.87920900  | -1.03335100 | 5.42289398  |
| С | -0.53200500 | -5.49578800 | 1.22210398  | Н | ł | 8.14951400  | -0.65431000 | 6.40456398  |
| С | -1.79888300 | -6.01453800 | 0.80167598  | C |   | 8.38742200  | -2.28922300 | 4.98850698  |
| С | -0.02268400 | -5.82271900 | 2.46796398  | Н | ł | 9.04183600  | -2.85929500 | 5.64225198  |
| С | -2.56464200 | -6.85019400 | 1.58978898  | С |   | 8.05334200  | -2.78249400 | 3.74785598  |
| С | -0.77656400 | -6.67708400 | 3.30924198  | н | ł | 6.65859600  | 0.65771200  | 4.93401798  |
| н | 0.93625100  | -5.43454900 | 2.79997498  | н | ł | 8.44139600  | -3.74249200 | 3.41590798  |

| С | -0.30209800 | -7.04925800 | 4.60471998  |
|---|-------------|-------------|-------------|
| С | -1.03335100 | -7.87920900 | 5.42289398  |
| Н | -0.65431000 | -8.14951400 | 6.40456398  |
| С | -2.28922300 | -8.38742200 | 4.98850698  |
| Н | -2.85929500 | -9.04183600 | 5.64225198  |
| С | -2.78249400 | -8.05334200 | 3.74785598  |
| Н | -3.74249200 | -8.44139600 | 3.41590798  |
| Н | 0.65771200  | -6.65859600 | 4.93401798  |
| Ν | 0.00035300  | -4.68839400 | 0.22519298  |
| Ν | -1.98267400 | -5.48795800 | -0.46119202 |
| Ν | -4.68839400 | -0.00035300 | 0.22519298  |
| Ν | -5.48795800 | 1.98267400  | -0.46119202 |

## C-tautomer

Number of imaginary frequencies 0

| Sym | bol X       | Y Z         | 2           |
|-----|-------------|-------------|-------------|
| 0   | -2.40668600 | 4.07018100  | -1.98561700 |
| 0   | 4.09633300  | -2.38491400 | -1.90596300 |
| 0   | 4.08728300  | 2.44285500  | -1.92145200 |
| 0   | 2.39125500  | 4.11123200  | -1.98862300 |
| 0   | -2.38348300 | -4.11270300 | -2.00549100 |
| 0   | 2.41811500  | -4.06997500 | -1.98574800 |
| 0   | -4.07882300 | -2.44383800 | -1.94041000 |
| 0   | -4.08396400 | 2.38293800  | -1.91786300 |
| С   | 3.07358800  | -3.13277100 | -1.18382100 |
| Н   | 2.37364200  | -2.43221900 | -0.72235000 |
| Н   | 3.63241900  | -3.69775500 | -0.43740200 |
| С   | 3.06280300  | 3.17985100  | -1.19259800 |
| Н   | 3.61904000  | 3.75033300  | -0.44828500 |
| Н   | 2.37279700  | 2.47103000  | -0.72709900 |
| С   | -3.05808100 | -3.18388600 | -1.20987800 |

| С | -7.04925800 | 0.30209800  | 4.60471998  |
|---|-------------|-------------|-------------|
| С | -7.87920900 | 1.03335100  | 5.42289398  |
| С | -8.38742200 | 2.28922300  | 4.98850698  |
| С | -8.05334200 | 2.78249400  | 3.74785598  |
| н | -8.44139600 | 3.74249200  | 3.41590798  |
| н | -9.04183600 | 2.85929500  | 5.64225198  |
| н | -8.14951400 | 0.65431000  | 6.40456398  |
| н | -6.65859600 | -0.65771200 | 4.93401798  |
| н | 2.80615500  | 5.57668500  | -1.04076002 |
| н | 5.57668500  | -2.80615500 | -1.04076002 |
| н | -2.80615500 | -5.57668500 | -1.04076002 |
| н | -5.57668500 | 2.80615500  | -1.04076002 |

| н | -2.37080200 | -2.47660700 | -0.73745800 |
|---|-------------|-------------|-------------|
| н | -3.61991000 | -3.75681000 | -0.47162200 |
| С | -3.06313700 | 3.12771400  | -1.19119300 |
| н | -2.36331800 | 2.42442900  | -0.73287700 |
| н | -3.62209300 | 3.68839100  | -0.44134500 |
| С | 1.22183800  | 3.00216900  | -3.77649600 |
| С | -2.67639400 | -0.01849100 | -4.30395200 |
| н | -2.13049000 | -0.01408800 | -5.24378100 |
| С | 1.23909900  | -2.97637300 | -3.77311000 |
| С | 2.54458000  | 2.54271400  | -4.36119200 |
| н | 3.30089900  | 3.32122900  | -4.22756900 |
| н | 2.42282900  | 2.36975600  | -5.43374200 |
| С | 1.21488400  | -3.69208600 | -2.57003700 |
| С | 3.01988100  | -1.20761600 | -3.70886800 |
| С | -1.20349300 | 3.69519900  | -2.57227900 |

| С | 0.00187800  | 2.65284800  | -4.36413100 |
|---|-------------|-------------|-------------|
| Н | 0.00673800  | 2.09750900  | -5.29879700 |
| С | 3.73835100  | -1.19481000 | -2.50800500 |
| С | 3.73510100  | 1.24631700  | -2.51536400 |
| С | -3.72213100 | -1.24702500 | -2.53173400 |
| С | 0.01633600  | -2.65126100 | -4.36788800 |
| Н | 0.01472700  | -2.09383600 | -5.30126000 |
| С | 1.19226300  | 3.71930800  | -2.57387300 |
| С | -3.00341900 | 1.20830700  | -3.72046800 |
| С | -1.20557500 | -3.00300100 | -3.78550000 |
| С | 2.69479400  | 0.01970500  | -4.29222200 |
| Н | 2.15184600  | 0.01630500  | -5.23375800 |
| С | 0.01818900  | -4.09460200 | -1.95813700 |
| С | -2.54058700 | 2.50506900  | -4.36188100 |
| Н | -3.30444600 | 3.27659200  | -4.22969700 |
| Н | -2.41488000 | 2.33426600  | -5.43432400 |
| С | -2.99888400 | -1.25080600 | -3.72936800 |
| С | -3.72465600 | 1.19380200  | -2.52138600 |
| С | -4.15096700 | -0.02920600 | -1.93398800 |
| С | 3.01513500  | 1.25107300  | -3.71495700 |
| С | 2.55874200  | -2.50293200 | -4.35410800 |
| Н | 3.32107800  | -3.27551700 | -4.21952700 |
| Η | 2.43770000  | -2.33053400 | -5.42682800 |
| С | -0.00895000 | 4.09512000  | -1.95575400 |
| С | -1.22373600 | 2.97962000  | -3.77545500 |
| С | -2.52603400 | -2.54215100 | -4.37472000 |
| Η | -3.28327800 | -3.32041600 | -4.24522800 |
| Η | -2.39981800 | -2.36756300 | -5.44648700 |
| С | -1.18075100 | -3.72205400 | -2.58406200 |
| С | 4.16353400  | 0.02782900  | -1.91859200 |
| С | 5.06546200  | 0.03310100  | -0.76968000 |

| С | 6.45655500  | 0.75388500  | 0.84719200  |
|---|-------------|-------------|-------------|
| С | 6.44400400  | -0.66531600 | 0.86762300  |
| С | 7.21911700  | 1.49344600  | 1.72417700  |
| С | 7.19195700  | -1.39268000 | 1.76687900  |
| С | 8.00441200  | 0.78075000  | 2.66462300  |
| Н | 7.22418400  | 2.57846400  | 1.70561300  |
| С | 7.99004300  | -0.66730700 | 2.68691200  |
| н | 7.17704900  | -2.47763700 | 1.78058400  |
| С | 0.02819100  | -4.83575600 | -0.66367400 |
| С | 0.17689900  | -5.18255700 | 1.43763400  |
| С | -0.07493400 | -6.42974100 | 0.74722900  |
| С | 0.31212300  | -5.14655900 | 2.81958700  |
| С | -0.18774200 | -7.62255800 | 1.44929500  |
| С | 0.20134500  | -6.35471300 | 3.55200800  |
| н | 0.50050600  | -4.21188600 | 3.34425200  |
| С | -0.05081300 | -7.60526300 | 2.85956300  |
| Н | -0.37660400 | -8.56285500 | 0.93550700  |
| С | -5.05305000 | -0.03420600 | -0.78531200 |
| С | -6.43897500 | -0.75497900 | 0.83600800  |
| С | -6.43063700 | 0.66447000  | 0.85257100  |
| С | -7.19535600 | -1.49458500 | 1.71798300  |
| С | -7.17907400 | 1.39176500  | 1.75135700  |
| С | -7.98076600 | -0.78172900 | 2.65859500  |
| Н | -7.19657900 | -2.57964200 | 1.70326500  |
| С | -7.97204600 | 0.66647000  | 2.67567200  |
| н | -7.16771700 | 2.47680100  | 1.76172200  |
| С | -0.02354000 | 4.83592100  | -0.66101700 |
| С | -0.10392500 | 5.17514000  | 1.44425400  |
| С | -0.02341800 | 6.43842000  | 0.74309400  |
| С | -0.17207000 | 5.13133100  | 2.83098500  |
| С | -0.01456400 | 7.64050600  | 1.43856700  |

| С | -0.16517900 | 6.34823400  | 3.55703700  | С | -8.79242000  | -1.47099500 | 3.60893200  |
|---|-------------|-------------|-------------|---|--------------|-------------|-------------|
| Н | -0.23267600 | 4.18460300  | 3.36419600  | С | -9.55178600  | -0.78092000 | 4.52473100  |
| С | -0.08575700 | 7.61549400  | 2.85353200  | Н | -10.16284800 | -1.32165600 | 5.24159700  |
| Н | 0.04452800  | 8.59302600  | 0.91612100  | С | -9.54233700  | 0.64107500  | 4.54220600  |
| Ν | 5.57205100  | -1.05060500 | -0.14597000 | Н | -10.14581400 | 1.17220500  | 5.27255000  |
| Ν | 5.59021600  | 1.12475600  | -0.17605800 | С | -8.77407200  | 1.34321100  | 3.64323900  |
| С | 8.82208200  | 1.47024600  | 3.61014500  | Н | -8.76487800  | 2.42980400  | 3.65478900  |
| С | 8.79391900  | -1.34381500 | 3.65311400  | Н | -8.79745900  | -2.55755100 | 3.59488200  |
| С | 9.56787900  | -0.64168700 | 4.54697600  | Ν | -5.57371700  | -1.12631500 | -0.18819600 |
| Н | 10.17306100 | -1.17246100 | 5.27618100  | Ν | -5.56078000  | 1.04964700  | -0.16260500 |
| С | 9.58236800  | 0.78037700  | 4.52496200  | Ν | -0.10216400  | 4.15945700  | 0.50722100  |
| Н | 10.19792000 | 1.32111500  | 5.23798600  | Ν | 0.02905200   | 6.18109300  | -0.61303900 |
| Н | 8.82970200  | 2.55674900  | 3.59241100  | С | -0.23758800  | 6.36999700  | 4.98452200  |
| Н | 8.78067200  | -2.43032000 | 3.66846300  | С | -0.23449000  | 7.55298700  | 5.69004400  |
| Ν | 0.23948600  | -4.17312900 | 0.49684800  | С | -0.15648900  | 8.79577100  | 5.00023500  |
| Ν | -0.16559400 | -6.16732600 | -0.60553000 | С | -0.08393600  | 8.81890300  | 3.62501600  |
| С | 0.33210000  | -6.38318500 | 4.97517600  | Н | -0.02450500  | 9.76845700  | 3.09698400  |
| С | 0.22422200  | -7.55742200 | 5.68725500  | Н | -0.15457200  | 9.72588900  | 5.56264400  |
| Н | 0.32749000  | -7.55103200 | 6.76928300  | Н | -0.29175300  | 7.54146900  | 6.77545000  |
| С | -0.02333900 | -8.78380300 | 5.00824700  | Н | -0.29709400  | 5.41987300  | 5.51168400  |
| Н | -0.10753700 | -9.70693700 | 5.57587400  | Н | 5.36905300   | -1.99450900 | -0.45554900 |
| С | -0.15569400 | -8.80010300 | 3.63727000  | Н | -5.36095500  | 1.99344900  | -0.47452500 |
| Н | 0.52118600  | -5.44545800 | 5.49394300  | Н | 5.39262000   | 2.06340600  | -0.50518800 |
| Н | -0.34465800 | -9.73735400 | 3.11775700  | Н | -5.37440000  | -2.06492900 | -0.51683900 |
|   |             |             |             |   |              |             |             |

#### 5.2 Computational methods for monomers

Photophysical properties of **4a** in its neutral, cationic, and anionic forms were calculated by means of *ab initio* methods. The ground-state equilibrium geometries of the rotamers were determined with the MP2 method.<sup>3</sup> The equilibrium geometries in the lowest excited singlet state have been determined with the CC2 method.<sup>4</sup> To estimate the potential energy barriers separating the minima, the minimum energy profiles were calculated along the relevant driving coordinate – the torsional angle defining rotation of the imidazole unit vs. the phenyl ring, both in the ground S<sub>0</sub> state (MP2) and in the excited singlet state, S<sub>1</sub> (CC2). Dunning's correlation-consistent split-valence double-zeta basis set with polarization functions on all atoms and augmented with the diffuse functions (aug-cc-pVDZ)<sup>5</sup> was employed in all these calculations. For calculations of the UV absorption spectra of different rotameric forms, the vertical excitation energies and response properties in the lowest excited singlet states have been calculated at the CC2/aug-cc-pVDZ theory level<sup>6, 7</sup>, using the S<sub>0</sub>-state equilibrium rotamer geometry determined at the MP2/aug-cc-pVDZ theory level. All the calculations were performed with the TURBOMOLE program package<sup>8</sup>.

**Table S1.** Vertical excitation energy ( $\Delta E^{VE}$ , in eV and  $\lambda_{abs}$ , in nm), oscillator strength (*f*), of the lowest singlet states for the equilibrium forms of the **Neutral-4a** molecule calculated with the **CC2/aug-cc-pVDZ** method at the ground state geometry optimized at the **MP2/aug-cc-pVDZ** theory level. Abbreviations: "dd" = down-down, "uu" – up-up, "r" – rotate, "s" – straight.

| S₀ form     |                                      | $\Delta E^{VE}$     | f      | $\lambda_{abs}$ | μe                   |
|-------------|--------------------------------------|---------------------|--------|-----------------|----------------------|
|             | Neu                                  | ıtral forms         |        |                 |                      |
| 4a-dd       | So                                   | -0.048 <sup>a</sup> |        |                 | $\mu_{g} = 3.5$      |
|             | S₀→S₁(ππ*)                           | 3.749               | 0.0567 | 331 nm          | 3.4                  |
|             | S₀→S₂(ππ*)                           | 4.023               | 0.3007 | 308 nm          | 2.7                  |
|             | S₀→S₃(ππ*)                           | 4.651               | 0.0326 | 267 nm          | 3.5                  |
| e 🐳 ≽       | S₀→S₄(nπ*)                           | 4.712               | 0.0010 |                 | 6.8                  |
| <b>•••</b>  | S₀→S₅(ππ*)                           | 4.852               | 0.6236 | 256 nm          | 4.3                  |
|             | S₀→S₅(ππ*)                           | 5.020               | 0.5988 | 247 nm          | 2.2                  |
|             | S₀→S⁊(nπ*)                           | 5.052               | 0.0634 |                 | 7.0                  |
|             | S₀→Sଃ(nπ*)                           | 5.122               | 0.0007 |                 | 2.5                  |
|             | S₀→S∍(nπ*)                           | 5.222               | 0.0070 |                 | 4.5                  |
|             | S₀→S₁₀(nπ*)                          | 5.246               | 0.0016 |                 | 4.2                  |
|             | S₀→S₁₁(ππ*)                          | 5.392               | 0.0712 | 230 nm          | 3.6                  |
|             | S₀→S₁₂(nπ*)                          | 5.419               | 0.0088 |                 | 4.3                  |
| 4a-dd-r     | So                                   | 0.00 <sup>a</sup>   |        |                 | $\mu_{g} = 5.9$      |
| <b>*</b>    | S₀→S₁(ππ*)                           | 3.950               | 0.0676 | 314 nm          | 5.1                  |
| <b>**</b>   | S₀→S₂(ππ*)                           | 4.155               | 0.0893 | 299 nm          | 6.0                  |
|             | S₀→S₃(nπ*)                           | 4.559               | 0.0000 |                 | 9.2                  |
|             | S₀→S₄(ππ*)                           | 4.712               | 0.0433 | 263 nm          | 4.8                  |
|             | S₀ <del>→</del> S₅(nπ*)              | 4.925               | 0.0000 |                 | 11.3                 |
|             | S₀→S₅(nπ*)                           | 5.098               | 0.0081 |                 | 5.5                  |
|             | S₀→S⁊(nπ*)                           | 5.129               | 0.0004 |                 | 4.3                  |
|             | S₀→Sଃ(nπ*)                           | 5.196               | 0.0001 |                 | 16.3                 |
| 4a-dd-s     | So                                   | 0.036 <sup>a</sup>  |        |                 | μ <sub>g</sub> = 6.7 |
| <b>&gt;</b> | S₀→S₁(ππ*)                           | 3.613               | 0.0781 | 343 nm          | 3.1                  |
|             | S₀→S₂(ππ*)                           | 3.844               | 0.6016 | 323 nm          | 4.7                  |
|             | S₀→S₃(nπ*)                           | 4.306               | 0.0645 | 288 nm          | 8.3                  |
|             | S₀→S₄(nπ*)                           | 4.477               | 0.0004 |                 | 9.5                  |
|             | S₀→S₅(ππ*)                           | 4.628               | 0.5264 | 268 nm          | 3.7                  |
|             | S₀→S₅(ππ*)                           | 4.656               | 0.1637 | 267 nm          | 4.1                  |
|             | S₀→S⁊(nπ*)                           | 4.852               | 0.0014 |                 | 10.8                 |
|             | S₀→S8(ππ*)                           | 4.867               | 0.2179 | 255 nm          | 3.0                  |
| <br>4a-uu-r | S <sub>0</sub>                       | 0.095 <sup>a</sup>  |        |                 | $\mu_{g} = 1.0$      |
| <b>1</b>    | S <sub>0</sub> →S <sub>1</sub> (ππ*) | 3.908               | 0.0676 | 318 nm          | 1.6                  |
|             | S <sub>0</sub> →S <sub>2</sub> (ππ*) | 4.139               | 0.0964 | 300 nm          | 1.6                  |
| <u></u>     | S₀→S₃(nπ*)                           | 4.622               | 0.0480 | 268 nm          | 1.2                  |
|             | S₀→S₄(nπ*)                           | 4.782               | 0.0001 |                 | 9.1                  |
| R 🙏 🤉       | S₀→S₅(nπ*)                           | 5.080               | 0.0324 | 244 nm          | 19.3                 |
| 🛫 🚺 🎾       | S₀→S₅(nπ*)                           | 5.109               | 0.0000 |                 | 5.9                  |
|             | S₀→S⁊(nπ*)                           | 5.151               | 0.0029 |                 | 1.7                  |
| ~~~~~       | S₀→S8(nπ*)                           | 5.285               | 0.0018 |                 | 2.4                  |

| Anionic - deprotonated forms                                                                                    |                                      |                    |         |          |                      |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------|---------|----------|----------------------|
| [4a-H] <sup>-</sup> -uu-r                                                                                       | So                                   | 0.00 <sup>a</sup>  |         |          | $\mu_{g} = 0.5$      |
| 2                                                                                                               | S₀→S₁(ππ*)                           | 3.239              | 0.0373  | 383 nm   | 5.9                  |
| 🥠 🔶                                                                                                             | S₀→S₂(nπ*)                           | 3.269              | 0.0000  |          | 20.9                 |
| <u></u>                                                                                                         | S₀→S₃(nπ*)                           | 3.530              | 0.0006  |          | 14.1                 |
|                                                                                                                 | S₀→S₄(nπ*)                           | 3.711              | 0.00002 |          | 2.1                  |
| , 🚺 ,                                                                                                           | S₀→S₅(nπ*)                           | 3.873              | 0.0001  |          | 26.8                 |
|                                                                                                                 | S₀→S₀(ππ*)                           | 3.897              | 0.1370  | 318 nm   | 2.7                  |
|                                                                                                                 | S₀→Sଃ(nπ*)                           | 3.929              | 0.0004  |          | 10.7                 |
| , Alanda and | S₀→S₀(nπ*)                           | 4.061              | 0.0067  |          | 18.9                 |
| l                                                                                                               | S₀→S₁₀(nπ*)                          | 4.090              | 0.0001  |          | 16.2                 |
| [4a-H] <sup>-</sup> -dd-r                                                                                       | So                                   | 0.059 <sup>a</sup> |         |          | μ <sub>g</sub> = 3.4 |
|                                                                                                                 | S₀→S₁(nπ*)                           | 3.228              | 0.0013  |          | 21.4                 |
| ┥ 🇭                                                                                                             | S₀→S₂(ππ*)                           | 3.245              | 0.0350  | 382 nm   | 8.6                  |
| <u></u>                                                                                                         | S₀→S₃(nπ*)                           | 3.475              | 0.0005  |          | 14.4                 |
|                                                                                                                 | S₀→S₄(nπ*)                           | 3.647              | 0.0004  |          | 3.9                  |
| 4                                                                                                               | S₀→S₅(nπ*)                           | 3.772              | 0.0001  |          | 20.7                 |
| 😪 👖 😪                                                                                                           | S₀→S₀(nπ*)                           | 3.884              | 0.0001  |          | 10.0                 |
|                                                                                                                 | S₀→S <sub>6</sub> (ππ*)              | 3.915              | 0.1097  | 317 nm   | 4.8                  |
|                                                                                                                 | S₀→S₀(nπ*)                           | 3.998              | 0.0029  |          | 8.4                  |
| U                                                                                                               | S₀→S₀(nπ*)                           | 4.050              | 0.0027  |          | 22.0                 |
|                                                                                                                 | S₀→S₀(nπ*)                           | 4.102              | 0.0009  |          | 4.3                  |
| [4a-H]⁻-ud-r                                                                                                    | So                                   | 0.160 <sup>a</sup> |         |          | $\mu_{g} = 4.5$      |
|                                                                                                                 | S₀→S₁(ππ*)                           | 3.131              | 0.0000  |          | 24.5                 |
|                                                                                                                 | S₀→S₂(ππ*)                           | 3.199              | 0.0348  | 388 nm   | 9.6                  |
| a 🚽 🎐                                                                                                           | S₀→S₃(ππ*)                           | 3.382              | 0.0005  |          | 16.3                 |
| <u></u>                                                                                                         | S₀→S₄(ππ*)                           | 3.450              | 0.0004  |          | 24.2                 |
| ₩ <b>~</b>                                                                                                      | S₀→S₅(nπ*)                           | 3.607              | 0.0001  |          | 5.4                  |
|                                                                                                                 | S₀→S <sub>6</sub> (ππ*)              | 3.695              | 0.0001  |          | 19.2                 |
|                                                                                                                 | S₀→S⁊(nπ*)                           | 3.891              | 0.0097  |          | 5.5                  |
| I                                                                                                               | S <sub>0</sub> →S <sub>8</sub> (nπ*) | 3.896              | 0.1088  | 319 nm   | 6.5                  |
|                                                                                                                 | S <sub>0</sub> →S <sub>9</sub> (nπ*) | 3.921              | 0.0063  |          | 10.2                 |
| [4a-H] <sup>-</sup> -dd-r                                                                                       | S <sub>0</sub>                       | 0.380 ª            | (0.219) |          | $\mu_{g} = 7.9$      |
|                                                                                                                 | $S_0 \rightarrow S_1(\pi \pi^*)$     | 2.984              | 0.0000  |          | 28.6                 |
|                                                                                                                 | $S_0 \rightarrow S_2(\pi \pi^*)$     | 3.123              | 0.0002  |          | 27.0                 |
|                                                                                                                 | $S_0 \rightarrow S_3(\pi \pi^*)$     | 3.158              | 0.0321  | 393 nm   | 12.6                 |
| <b>**</b>                                                                                                       | $S_0 \rightarrow S_4(\pi \pi^*)$     | 3.230              | 0.0007  |          | 20.7                 |
| <b>~</b>                                                                                                        | $S_0 \rightarrow S_5(n\pi^*)$        | 3.332              | 0.0002  |          | 17.4                 |
|                                                                                                                 | $S_0 \rightarrow S_6(\pi \pi^*)$     | 3.418              | 0.0000  |          | 1.95                 |
| N T T N                                                                                                         | $S_0 \rightarrow S_7(n\pi^*)$        | 5.054<br>2 710     | 0.0000  |          | 0.1                  |
|                                                                                                                 | $50 \rightarrow 58(11\pi^{+})$       | 3.710              | 0.0011  |          | 7.2<br>29.1          |
| 0                                                                                                               | Cationic - n                         | orotonated form    | 0.0031  |          | 23.1                 |
| [4a+H] <sup>+</sup> -dd-s                                                                                       | cationic p                           | 0.00 <sup>a</sup>  | 15      |          | $u_{n} = 5.8$        |
|                                                                                                                 | S₀→S₁(ππ*)                           | 3.374              | 0.0407  | 368 nm   | 9.7                  |
|                                                                                                                 | S <sub>0</sub> →S <sub>2</sub> (ππ*) | 3.762              |         | 330 nm   | 0.3                  |
| <b>)</b> – (                                                                                                    | S <sub>0</sub> →S <sub>3</sub> (ππ*) | 3.984              |         | 311 nm   | 10.0                 |
|                                                                                                                 | S <sub>0</sub> →S <sub>4</sub> (ππ*) | 4.599              |         | 270 nm   | 3.5                  |
|                                                                                                                 | S <sub>0</sub> →S <sub>5</sub> (ππ*) | 4.763              |         | 261 nm   | 5.3                  |
|                                                                                                                 | S₀→S₀(nπ*)                           | 5.268              |         |          | 6.3                  |
|                                                                                                                 | Sa→C_/ <i>~~</i> *\D                 | 5 206              |         | 221 nm   | 3 0                  |
| a T a                                                                                                           | 30→37(nn )r<br>Sa→Sa(nπ*)D           | 5.290<br>5.710     |         | 234 1111 | 3.U<br>2.7           |
| o                                                                                                               | 50 ∕38(II/ )r<br>Sa→Sa(n#*)D         | 5.710              | 0 7478  |          | 3.2<br>3.0           |
| -                                                                                                               | 30 / 39(11/L JF                      | J./41              | 0.7470  |          | 5.0                  |

| 4a+H]⁺-dd-r  |                                       | 0.324 <sup>a</sup> | 0.0721 |        | μ <sub>g</sub> = 5.3 |
|--------------|---------------------------------------|--------------------|--------|--------|----------------------|
|              | S <sub>0</sub> →S <sub>1</sub> (ππ*)  | 3.257              | 0.6772 | 381 nm | 11.2                 |
|              | S₀→S₂(ππ*)                            | 3.772              | 0.0187 | 329 nm | 2.5                  |
|              | S₀→S₃(ππ*)                            | 4.224              | 0.0000 | 294 nm | 8.4                  |
|              | S₀→S₄(ππ*)                            | 4.655              | 0.0381 | 267 nm | 1.5                  |
|              | S₀→S₅(ππ*)                            | 4.688              | 0.0007 |        | 6.0                  |
| Sa 🕹 🔊       | S₀→S <sub>6</sub> (ππ*)               | 5.229              | 0.0421 |        | 6.0                  |
|              | S₀→S⁊(nπ*)                            | 5.313              | 0.0006 |        | 7.0                  |
|              | S₀→Sଃ(nπ*)                            | 5.322              | 0.0645 | 233 nm | 1.3                  |
| 8            | S₀→S∍(nπ*)                            | 5.419              | 0.0053 |        | 6.7                  |
|              | S₀→S₁₀(nπ*)                           | 5.663              | 0.0993 | 219 nm | 20.8                 |
|              | S₀→S₁1(nπ*)                           | 5.726              | 0.0052 |        | 3.2                  |
|              | S <sub>0</sub> →S <sub>12</sub> (nπ*) | 5.803              | 0.4425 | 214 nm | 1.1                  |
| [4a+H]⁺-dd-r |                                       | 0.345 <sup>a</sup> |        |        | μ <sub>g</sub> = 3.4 |
|              | S₀→S₁(ππ*)                            | 3.664              | 0.0548 | 339 nm | 7.2                  |
| e 🔶 🔶        | S <sub>0</sub> →S <sub>2</sub> (ππ*)  | 4.104              | 0.1438 | 302 nm | 0.4                  |
| <u></u>      | S₀→S₃(ππ*)                            | 4.563              | 0.0371 | 272 nm | 11.9                 |
|              | S₀→S₄(ππ*)                            | 4.592              | 0.0495 | 270 nm | 9.2                  |
|              | S₀→S₅(nπ*)                            | 4.877              | 0.0015 |        | 16.6                 |
|              | S₀→S₀(nπ*)                            | 4.998              | 0.0051 |        | 7.3                  |
|              | S₀→Sァ(ππ*)                            | 5.234              | 1.447  | 237 nm | 4.5                  |
|              | S₀→Sଃ(nπ*)                            | 5.371              | 0.0000 |        | 10.2                 |
|              | S₀→S <sub>9</sub> (ππ*)               | 5.531              | 0.0432 | 224 nm | 0.5                  |
| [4a+H]⁺-uu-r |                                       | 1.129 <sup>a</sup> |        |        | $\mu_{g} = 0.8$      |
| ×            | S₀→S₁(ππ*)                            | 3.276              | 0.0045 |        | 9.9                  |
|              | S₀→S₂(ππ*)                            | 3.428              | 0.0345 | 362 nm | 8.4                  |
|              | S₀→S₃(ππ*)                            | 4.021              | 0.1895 | 309 nm | 5.1                  |
|              | S₀→S₄(ππ*)                            | 4.404              | 0.1036 | 282 nm | 2.0                  |
|              | S₀→S₅(ππ*)                            | 4.430              | 0.0000 |        | 11.4                 |
|              | S₀→S <sub>6</sub> (ππ*)               | 4.760              | 0.0113 |        | 10.0                 |



Figure S54. Minimum potential-energy profiles for  $[4a-H]^{-}$  for the ground electronic state (S<sub>0</sub>) (filled black circles), the lowest emitting excited state S<sub>1</sub>( $\pi\pi^*$ ) (filled blue squares), and the second lowest dark excited state S<sub>2</sub>( $n\pi^*$ ) (filled red triangles) as a function of the  $\alpha$  (N-C-C-C) dihedral angle optimized with the MP2/aug-cc-pVDZ method, for S<sub>0</sub> state, and with the CC2/aug-cc-pVDZ method, for the excited states, respectively. The  $\alpha$  dihedral angle was fixed while the rest of the geometric parameters were being optimized in the calculations of given state. The shaded gray circle shows a conical intersection region between the S<sub>2</sub>( $n\pi^*$ ) and S<sub>1</sub>( $\pi\pi^*$ ) excited states. S<sub>0</sub><sup>[S1( $\pi\pi^*$ )]</sup> denotes the S<sub>0</sub>-state energy level calculated at the geometry of the excited state S<sub>1</sub>( $\pi\pi^*$ )(empty squares, dashed blue curve).

Cartesian coordinates of important structures optimized with the MP2/aug-cc-pVDZ method, for the ground state and with the CC2/aug-cc-pVDZ method, for the excited state.

Neutral forms

Neutral,  $S_0$  –state, E=0.00 eV  $\mu_g$  =3.5 D

39

| FINAI ΗFAT | OF | FORMATION = | -990 857317 |
|------------|----|-------------|-------------|
|            |    |             | -220.02/21/ |

| С | 1.202201  | 4.752801 | 0.598460  |
|---|-----------|----------|-----------|
| С | 0.609067  | 3.507377 | 0.206039  |
| С | -0.648051 | 3.537640 | -0.534333 |
| С | -1.232069 | 4.810057 | -0.840588 |
| С | -0.625083 | 5.993546 | -0.443721 |
| С | 0.604211  | 5.964760 | 0.284194  |
| С | -1.272939 | 2.330554 | -0.946900 |

| С | -0.637120 | 1.134379  | -0.609210 |
|---|-----------|-----------|-----------|
| С | 0.601722  | 1.086160  | 0.120444  |
| С | 1.226011  | 2.271229  | 0.528308  |
| Ν | -0.946713 | -0.192448 | -0.844532 |
| С | 0.044197  | -0.965090 | -0.260356 |
| Ν | 0.997155  | -0.234571 | 0.322998  |
| С | -0.023847 | -2.434995 | -0.298583 |

| С | -1.262347 | -3.099491 | -0.104610 |
|---|-----------|-----------|-----------|
| С | -1.358809 | -4.496825 | -0.163229 |
| С | -0.208827 | -5.261064 | -0.431102 |
| С | 1.027424  | -4.624187 | -0.632818 |
| С | 1.123644  | -3.222362 | -0.571349 |
| 0 | -2.426884 | -2.364164 | 0.114487  |
| С | -2.474969 | -1.823797 | 1.455918  |
| 0 | 2.325693  | -2.615554 | -0.872488 |
| С | 3.191079  | -2.509334 | 0.280806  |
| Н | -1.807643 | -0.572832 | -1.225043 |
| Н | 2.170303  | 2.245871  | 1.081300  |
| Н | -2.212021 | 2.358890  | -1.508807 |
| Н | -2.335252 | -4.963350 | -0.009094 |
|   |           |           |           |

Neutral, S<sub>1</sub> ( $\pi\pi^*$ ) state, E=3.397 eV  $\mu_g$  = 7.5 D

39

FINAL HEAT OF FORMATION = -990.777531

| С | 1.420870  | 4.829006  | 0.037525  |
|---|-----------|-----------|-----------|
| С | 0.759734  | 3.590513  | -0.089664 |
| С | -0.673483 | 3.605175  | -0.342628 |
| С | -1.349142 | 4.837582  | -0.451296 |
| С | -0.659967 | 6.075754  | -0.318233 |
| С | 0.718640  | 6.064082  | -0.075531 |
| С | -1.375420 | 2.354951  | -0.474406 |
| С | -0.642955 | 1.162086  | -0.361341 |
| С | 0.792578  | 1.118252  | -0.106784 |
| С | 1.477362  | 2.343879  | 0.025650  |
| Ν | -1.010418 | -0.140587 | -0.443643 |
| С | 0.145477  | -0.975307 | -0.243879 |
| Ν | 1.252831  | -0.155613 | -0.029961 |
| С | 0.053949  | -2.391175 | -0.320061 |
| С | -1.220666 | -3.074864 | -0.339270 |
| С | -1.340034 | -4.448325 | -0.564296 |
| С | -0.185709 | -5.238250 | -0.759771 |
| С | 1.085868  | -4.620606 | -0.687024 |
| С | 1.214566  | -3.245245 | -0.466183 |

Cationic forms

Cation,  $S_0-$  state, E=0.324 eV  $\mu_e$  =5.3 D

### 40

| FIN | AL HEAT OF | FORMATION | N = -991.249233 |
|-----|------------|-----------|-----------------|
| С   | 1.417467   | 4.894041  | -0.103589       |
| С   | 0.728412   | 3.638583  | -0.090695       |
| С   | -0.732532  | 3.638735  | -0.091783       |
| С   | -1.421306  | 4.894335  | -0.105806       |
| С   | -0.716288  | 6.088338  | -0.117706       |
| С   | 0.712716   | 6.088189  | -0.116608       |
| С   | -1.458095  | 2.418155  | -0.080197       |
| С   | -0.716265  | 1.237578  | -0.069137       |

| Н | -0.278494 | -6.350773 | -0.490711 |
|---|-----------|-----------|-----------|
| Н | 1.927805  | -5.197671 | -0.869791 |
| Н | -2.173945 | 4.833793  | -1.399690 |
| Н | -1.088967 | 6.953475  | -0.689968 |
| Н | 1.075062  | 6.902652  | 0.593319  |
| Н | 2.145175  | 4.728952  | 1.155381  |
| Н | 4.110060  | -2.028319 | -0.078128 |
| Н | 2.714890  | -1.883668 | 1.049654  |
| Н | 3.421770  | -3.512879 | 0.677002  |
| Н | -3.407371 | -1.248071 | 1.521130  |
| Н | -2.484271 | -2.646154 | 2.189352  |
| Н | -1.611847 | -1.164535 | 1.646256  |
|   |           |           |           |

| 0 | -2.408901 | -2.343122 | -0.100879 |
|---|-----------|-----------|-----------|
| С | -2.593868 | -2.159801 | 1.326760  |
| 0 | 2.486652  | -2.693189 | -0.475965 |
| С | 2.975653  | -2.453393 | 0.862884  |
| Н | -1.936463 | -0.553627 | -0.599797 |
| Н | 2.558296  | 2.355313  | 0.210129  |
| Н | -2.457341 | 2.352110  | -0.656998 |
| Н | -2.343633 | -4.886341 | -0.574230 |
| Н | -0.272739 | -6.312639 | -0.946852 |
| Н | 2.005937  | -5.199059 | -0.820793 |
| Н | -2.429165 | 4.833579  | -0.643058 |
| Н | -1.205426 | 7.019735  | -0.406066 |
| н | 1.269479  | 7.004335  | 0.029807  |
| Н | 2.500641  | 4.836702  | 0.227916  |
| Н | 3.929687  | -1.921025 | 0.747688  |
| Н | 2.270636  | -1.822084 | 1.425849  |
| Н | 3.132851  | -3.417356 | 1.378728  |
| Н | -3.513403 | -1.568577 | 1.449957  |
| Н | -2.702049 | -3.140690 | 1.816935  |
| Н | -1.730925 | -1.622181 | 1.758783  |

| С | 0.711568  | 1.237430  | -0.068038 |
|---|-----------|-----------|-----------|
| С | 1.453681  | 2.417839  | -0.078022 |
| Ν | -1.097304 | -0.103759 | -0.058251 |
| С | -0.002569 | -0.900391 | -0.056452 |
| Ν | 1.092323  | -0.103977 | -0.056444 |
| С | -0.002679 | -2.359115 | -0.112408 |
| С | -1.223019 | -3.083691 | -0.188829 |
| С | -1.221218 | -4.471277 | -0.382782 |

| С | -0.002718 | -5.163921 | -0.487910 |
|---|-----------|-----------|-----------|
| С | 1.215786  | -4.471509 | -0.381286 |
| С | 1.217618  | -3.083936 | -0.187248 |
| 0 | -2.434931 | -2.408165 | -0.072489 |
| С | -2.986732 | -2.537528 | 1.271307  |
| 0 | 2.429518  | -2.408687 | -0.069142 |
| С | 2.979419  | -2.538375 | 1.275405  |
| Н | -2.028510 | -0.520494 | -0.129681 |
| Н | 2.547443  | 2.418180  | -0.079441 |
| Н | -2.551855 | 2.418742  | -0.083125 |
| Н | -2.178206 | -4.993907 | -0.460453 |
| Н | -0.002717 | -6.243929 | -0.655324 |
|   |           |           |           |

Cation, S1( $\pi\pi^*$ ), E=3.243 eV  $\mu_g$  = 10.1 D

40

| FIN | AL HEAT OF | FORMATION | l = -991.187856 |
|-----|------------|-----------|-----------------|
| С   | 1.176917   | -3.144888 | 0.239589        |
| С   | -0.032729  | -2.373031 | 0.119153        |
| С   | -1.272995  | -3.097831 | 0.218502        |
| С   | -1.298487  | -4.467193 | 0.493996        |
| С   | -0.091311  | -5.184255 | 0.654324        |
| С   | 1.145089   | -4.514118 | 0.515063        |
| С   | -0.004557  | -0.977643 | -0.044731       |
| Ν   | -1.111437  | -0.080100 | -0.068967       |
| С   | -0.684279  | 1.216755  | -0.018764       |
| С   | 0.757988   | 1.189178  | -0.006071       |
| Ν   | 1.136066   | -0.123066 | -0.048970       |
| С   | 1.505327   | 2.377346  | 0.038794        |
| С   | 0.805463   | 3.628885  | 0.069012        |
| С   | -0.639880  | 3.656516  | 0.056086        |
| С   | -1.386382  | 2.432601  | 0.013106        |
| С   | -1.299462  | 4.905929  | 0.090732        |
| С   | -0.568320  | 6.130560  | 0.135496        |
| С   | 0.827013   | 6.103896  | 0.147962        |
| С   | 1.511541   | 4.852221  | 0.115893        |
| 0   | -2.474303  | -2.391236 | 0.036084        |

Anionic forms

Anion,  $S_0$  –state, E=0.059 eV  $\mu_g$  = 3.4 D

## 38

| FIN | AL HEAT OF | FORMATION | N = -990.324396 |
|-----|------------|-----------|-----------------|
| С   | 3.234537   | -0.172317 | -1.236092       |
| С   | 2.523019   | -0.262454 | -0.010979       |
| С   | 3.277777   | -0.463182 | 1.172082        |
| С   | 4.676171   | -0.594582 | 1.151786        |
| С   | 5.356651   | -0.529328 | -0.078186       |
| С   | 4.639361   | -0.309189 | -1.263908       |
| С   | 1.038260   | -0.241543 | 0.044772        |
| Ν   | 0.351709   | 0.869731  | 0.453027        |
| С   | -0.956583  | 0.483251  | 0.257552        |

| Н | 2.172763  | -4.994323 | -0.457844 |
|---|-----------|-----------|-----------|
| Н | -2.515748 | 4.896128  | -0.107554 |
| Н | -1.256747 | 7.038770  | -0.128628 |
| Н | 1.253389  | 7.038508  | -0.126778 |
| Н | 2.511912  | 4.895610  | -0.103561 |
| Н | 3.938853  | -2.006275 | 1.262613  |
| Н | 2.291906  | -2.086356 | 2.009709  |
| Н | 3.140313  | -3.598822 | 1.517174  |
| Н | -3.945982 | -2.005133 | 1.257118  |
| Н | -3.148269 | -3.597898 | 1.512987  |
| Н | -2.300098 | -2.085632 | 2.006510  |
| Н | 2.023555  | -0.520903 | -0.126395 |
|   |           |           |           |

| С | -2.988761 | -2.593183 | -1.311908 |
|---|-----------|-----------|-----------|
| 0 | 2.407422  | -2.484938 | 0.078144  |
| С | 2.936877  | -2.706872 | -1.260850 |
| Н | -2.055233 | -0.458772 | 0.049364  |
| Н | 2.600984  | 2.359144  | 0.057147  |
| Н | -2.482088 | 2.456257  | 0.011911  |
| Н | -2.268073 | -4.966577 | 0.588341  |
| Н | -0.113837 | -6.252317 | 0.887557  |
| Н | 2.093015  | -5.050302 | 0.626076  |
| Н | -2.395586 | 4.932129  | 0.083291  |
| Н | -1.108762 | 7.081250  | 0.160847  |
| Н | 1.402838  | 7.033257  | 0.183261  |
| Н | 2.607823  | 4.836552  | 0.128080  |
| Н | 3.902297  | -2.183407 | -1.299629 |
| Н | 3.083812  | -3.783196 | -1.436385 |
| Н | 2.240882  | -2.297535 | -2.014002 |
| Н | -3.932586 | -2.033087 | -1.367121 |
| Н | -2.264774 | -2.211013 | -2.052848 |
| Н | -3.173772 | -3.663152 | -1.490227 |
| н | 2.062556  | -0.537496 | 0.085208  |

| С | -0.971053 | -0.875323 | -0.269330 |
|---|-----------|-----------|-----------|
| Ν | 0.327622  | -1.319826 | -0.399177 |
| С | -2.156698 | 1.183215  | 0.481302  |
| С | -3.385094 | 0.544860  | 0.180449  |
| С | -3.399811 | -0.822441 | -0.349468 |
| С | -2.185746 | -1.519448 | -0.567525 |
| С | -4.671027 | -1.423801 | -0.637089 |
| С | -5.866722 | -0.747119 | -0.427155 |
| С | -5.852356 | 0.587642  | 0.089918  |

| С | -4.642701 | 1.206576  | 0.382242  |
|---|-----------|-----------|-----------|
| 0 | 2.626357  | -0.616218 | 2.390560  |
| С | 2.298794  | 0.658319  | 2.984164  |
| 0 | 2.653811  | 0.001017  | -2.473896 |
| С | 1.450060  | 0.798601  | -2.551425 |
| Н | -2.151903 | 2.205245  | 0.879588  |
| Н | -2.201411 | -2.543475 | -0.959632 |
| Н | 5.143936  | -0.241823 | -2.231945 |
| Н | 6.445439  | -0.638644 | -0.112192 |
| Н | 5.204052  | -0.770107 | 2.093565  |
|   |           |           |           |

Anion,  $S_1(\pi\pi^*)$  state, E=3.109 eV  $\mu_e$  = 6.2 D

```
38
```

| FIN | AL HEAT OF | FORMATION | l = -990.259825 |
|-----|------------|-----------|-----------------|
| С   | 3.231249   | -0.133100 | -1.284445       |
| С   | 2.493219   | -0.281842 | -0.065911       |
| С   | 3.252666   | -0.531200 | 1.119504        |
| С   | 4.646672   | -0.698576 | 1.088937        |
| С   | 5.337128   | -0.614822 | -0.139472       |
| С   | 4.627536   | -0.316388 | -1.319021       |
| С   | 1.035612   | -0.271903 | -0.039505       |
| Ν   | 0.287937   | 0.448009  | 0.884757        |
| С   | -1.026658  | 0.200526  | 0.504614        |
| С   | -1.028567  | -0.661510 | -0.645894       |
| Ν   | 0.283780   | -0.964323 | -0.991561       |
| С   | -2.229573  | 0.660612  | 1.066908        |
| С   | -3.486019  | 0.261306  | 0.478099        |
| С   | -3.488448  | -0.627677 | -0.683224       |
| С   | -2.234282  | -1.082469 | -1.234124       |
| С   | -4.737511  | -1.013587 | -1.245553       |
| С   | -5.972903  | -0.553056 | -0.696803       |
| С   | -5.970714  | 0.299168  | 0.416039        |
| С   | -4.732449  | 0.707479  | 0.999427        |

Anion,  $S_1(n\pi^*)$  state, E=3.213 eV  $\mu_e$  = 22.8 D

38

| FIN | IAL HEAT OF | FORMATIO | N = -990.255996 |
|-----|-------------|----------|-----------------|
| С   | 3.255644    | 0.090821 | -1.277038       |
| ~   | 2 540265    | 0 202564 | 0.000000        |

| С | 2.518365  | -0.202564 | -0.099862 |
|---|-----------|-----------|-----------|
| С | 3.227525  | -0.627023 | 1.052998  |
| С | 4.623341  | -0.782289 | 1.045564  |
| С | 5.332223  | -0.517221 | -0.144497 |
| С | 4.658593  | -0.074118 | -1.294760 |
| С | 1.041878  | -0.202856 | -0.061838 |
| Ν | 0.321816  | 0.737048  | 0.638000  |
| С | -0.990438 | 0.385013  | 0.360378  |
| С | -0.987922 | -0.775716 | -0.508037 |
| Ν | 0.324619  | -1.140911 | -0.767167 |
| С | -2.182927 | 0.973813  | 0.780379  |
| С | -3.428515 | 0.403941  | 0.328659  |

| Н | -4.681311 | -2.446920 | -1.033110 |
|---|-----------|-----------|-----------|
| Н | -6.820498 | -1.234686 | -0.656825 |
| Н | -6.795135 | 1.120480  | 0.255633  |
| Н | -4.631380 | 2.229516  | 0.778961  |
| Н | 1.764703  | 0.427509  | 3.917018  |
| Н | 3.226101  | 1.215750  | 3.213087  |
| Н | 1.650319  | 1.237844  | 2.308629  |
| Н | 1.411791  | 1.143065  | -3.595407 |
| Н | 0.557814  | 0.201893  | -2.314037 |
| Н | 1.511147  | 1.657913  | -1.866957 |
|   |           |           |           |

| 0 | 2.587079  | -0.732832 | 2.326585  |
|---|-----------|-----------|-----------|
| С | 2.466591  | 0.495454  | 3.078424  |
| 0 | 2.645472  | 0.198551  | -2.493152 |
| С | 1.623961  | 1.226799  | -2.447883 |
| Н | -2.228089 | 1.319448  | 1.945296  |
| Н | -2.234037 | -1.744041 | -2.110342 |
| Н | 5.138571  | -0.195398 | -2.279459 |
| Н | 6.422348  | -0.758511 | -0.174025 |
| Н | 5.166775  | -0.931033 | 2.024021  |
| Н | -4.737395 | -1.682777 | -2.116102 |
| Н | -6.920345 | -0.869390 | -1.149777 |
| Н | -6.916291 | 0.655976  | 0.842032  |
| Н | -4.728611 | 1.374122  | 1.872016  |
| Н | 1.904421  | 0.238918  | 3.988178  |
| Н | 3.470168  | 0.874635  | 3.346955  |
| Н | 1.905246  | 1.239958  | 2.492853  |
| Н | 1.757345  | 1.812039  | -3.370623 |
| Н | 0.619986  | 0.777813  | -2.421251 |
| Н | 1.768130  | 1.873623  | -1.566516 |

| С | -3.426734 | -0.758833 | -0.536919 |
|---|-----------|-----------|-----------|
| С | -2.178446 | -1.349583 | -0.953260 |
| С | -4.666182 | -1.295768 | -0.966958 |
| С | -5.882148 | -0.707014 | -0.574835 |
| С | -5.883394 | 0.423441  | 0.268847  |
| С | -4.668051 | 0.968209  | 0.720696  |
| 0 | 2.504111  | -0.972515 | 2.188617  |
| С | 2.342267  | 0.160842  | 3.079061  |
| 0 | 2.699327  | 0.521564  | -2.461572 |
| С | 1.512212  | 1.351851  | -2.382540 |
| Н | -2.192549 | 1.850196  | 1.440726  |
| Н | -2.180672 | -2.233391 | -1.603562 |
| Н | 5.194417  | 0.154421  | -2.220291 |

| 6.419126  | -0.645975                                                                | -0.171856                                                                                                | Н                                                                                                                                                           | 1.751863                                                                                                                                                          | -0.208127                                                                                                                                                                                                         | 3.929009                                                                                                                                                                                                                                                           |
|-----------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.128467  | -1.132525                                                                | 1.950342                                                                                                 | Н                                                                                                                                                           | 3.330318                                                                                                                                                          | 0.512294                                                                                                                                                                                                          | 3.426603                                                                                                                                                                                                                                                           |
| -4.668201 | -2.175487                                                                | -1.622358                                                                                                | Н                                                                                                                                                           | 1.801555                                                                                                                                                          | 0.970568                                                                                                                                                                                                          | 2.562732                                                                                                                                                                                                                                                           |
| -6.832259 | -1.126463                                                                | -0.924597                                                                                                | Н                                                                                                                                                           | 1.529760                                                                                                                                                          | 1.957233                                                                                                                                                                                                          | -3.299453                                                                                                                                                                                                                                                          |
| -6.833192 | 0.877548                                                                 | 0.573049                                                                                                 | Н                                                                                                                                                           | 0.598982                                                                                                                                                          | 0.738306                                                                                                                                                                                                          | -2.355160                                                                                                                                                                                                                                                          |
| -4.672738 | 1.848155                                                                 | 1.375906                                                                                                 | Н                                                                                                                                                           | 1.557957                                                                                                                                                          | 2.003115                                                                                                                                                                                                          | -1.495005                                                                                                                                                                                                                                                          |
|           | 6.419126<br>5.128467<br>-4.668201<br>-6.832259<br>-6.833192<br>-4.672738 | 6.419126-0.6459755.128467-1.132525-4.668201-2.175487-6.832259-1.126463-6.8331920.877548-4.6727381.848155 | 6.419126-0.645975-0.1718565.128467-1.1325251.950342-4.668201-2.175487-1.622358-6.832259-1.126463-0.924597-6.8331920.8775480.573049-4.6727381.8481551.375906 | 6.419126-0.645975-0.171856H5.128467-1.1325251.950342H-4.668201-2.175487-1.622358H-6.832259-1.126463-0.924597H-6.8331920.8775480.573049H-4.6727381.8481551.375906H | 6.419126-0.645975-0.171856H1.7518635.128467-1.1325251.950342H3.330318-4.668201-2.175487-1.622358H1.801555-6.832259-1.126463-0.924597H1.529760-6.8331920.8775480.573049H0.598982-4.6727381.8481551.375906H1.557957 | 6.419126-0.645975-0.171856H1.751863-0.2081275.128467-1.1325251.950342H3.3303180.512294-4.668201-2.175487-1.622358H1.8015550.970568-6.832259-1.126463-0.924597H1.5297601.957233-6.8331920.8775480.573049H0.5989820.738306-4.6727381.8481551.375906H1.5579572.003115 |

<sup>&</sup>lt;sup>1</sup> P. Jurek, H. Jędrzejewska, M. R. Rode, A. Szumna, *Chem. Eur. J.*, 2023, **29**, e2022031.

<sup>&</sup>lt;sup>2</sup> M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, GAUSSIAN 16 (Revision C.01) Gaussian Inc., Wallingford, CT, 2016.

<sup>&</sup>lt;sup>3</sup> C. Møller, M.S. Plesset, *Phys. Rev.* **1934**, *46*, 618-622.

<sup>&</sup>lt;sup>4</sup> A. Köhn, C. Hättig, J. Chem. Phys. **2003**, 119, 5021.

<sup>&</sup>lt;sup>5</sup> T. H. Dunning Jr., *J. Chem. Phys.* **1989**, *90*, 1007-1023.

<sup>&</sup>lt;sup>6</sup> O. Christiansen, H. Koch, P. Jørgensen, Chem. Phys. Lett. **1995**, 243, 409-418.

<sup>&</sup>lt;sup>7</sup> C. Hättig, F. Weigend, J. Chem. Phys. **2000**, 113, 5154-5161.

<sup>&</sup>lt;sup>8</sup> TURBOMOLE, V7.5, a Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007. Since 2007 TURBOMOLE GmbH. Available online: http://www.turbomole.com (accessed on 10 June 2016).