Supplementary Information

Peroxidase-like bimetal Cu-Fe oxide mesoporous nano-spheres identified for efficient recognition of toxic *o*-Aminophenol and bioactive glutathione

Xuemei Zhou,^{a,\xi} Lingmin Kong,^{a,ξ} Junkai Hao,^a Jing Feng,^a Shuo Sun,^a Chuanzhen Zhou,^b

Yanmin Liu,^c Zhengquan Yan,^{a,*} Xiao Zhu,^a Lei Hu^{a,*}

^aSchool of Chemistry and Chemical Engineering & Key Laboratory of Catalytic Conversion

and Clean Energy in Universities of Shandong Province, Qufu Normal University, Qufu, 273165,

China

^bCollege of Chemical and Biological Engineering, Shandong University of Science and

Technology, Qingdao, 266590, China

^cQufu Agriculture-Technology Extension and Service Center, Qufu, 273100, China

Email: kaixinguolei333@163.com, yanzhq2008@163.com

 $[\]xi$ The two authors contributed equally to the work

Figure S1. The optimized conditions of a) mole feed ratios of Cu to Fe, b) PVP dosages, c) ammonia dosage and d) microwave radiation time.

Figure S2. SEM graph of the proposed Cu-Fe MNPs

Figure S3. a) DLS curve, b) XPS wide angle spectra, high-resolution spectra of c) Cu2p, d) Fe2p,e) O1s and f) ζ potential of the proposed Cu-Fe MNPs

Figure S4. The effects of a) pH, b) TMB concentration, c) H₂O₂ concentration, d) reaction time and e) reaction temperature on absorbance intensity at 653 nm (*A*₆₅₃) of Cu-Fe MNPs

Figure S5. Steady-state kinetics of Cu-Fe MNPs with a) different c_{TMB} , b) c_{H2O2} ; and the corresponding double-reciprocal plots of $1/\nu$ against c) $1/c_{\text{TMB}}$ and d) $1/c_{\text{H2O2}}$ with changing c_{TMB} or c_{H2O2} but fixed the others; UV-vis spectra and color changes (Insert) for Cu-Fe MNPs-TMB-H₂O₂ system e) in the presence of isopropanol and hydroxylammonium chloride and f) under air-saturated and N₂-saturated conditions

Figure S6. Time response curves of A₆₅₃ upon the addition of a) o-AP and b) GSH respectively

Figure S7. The comparison for UV-vis absorption spectra of TMB- H_2O_2 systems catalyzed by original Cu-Fe MNPs (Blank), Cu-Fe MNPs after detecting *o*-AP (Red) and Cu-Fe MNPs after detecting GSH (Blue) respectively (0.1 mg/mL Cu-Fe MNPs, pH 3.5, 0.07 mM TMB, 83.3 mM

 $\rm H_2O_2$ and incubated 35 min at 25 °C)

Table S1. Calculation of initial reaction rate: The concentration of TMB-derived oxidation products was calculated by Lambert-Beer Law with a molarabsorption coefficient of 39000 $M^{-1} \cdot cm^{-1}$

Time(s	A	The concentration of TMB-derived oxidation products	Rate
)		(M)	$R=(c/t)_{average}$
		($c=A/\varepsilon b$, where $\varepsilon=39000 \text{ M}^{-1} \cdot \text{cm}^{-1}, b=1 \text{ cm}$)	$(M \cdot s^{-1})$
30	0.111	2.85×10 ⁻⁶	
60	0.125	3.21×10 ⁻⁶	
90	0.139	3.56×10 ⁻⁶	
120	0.152	3.87×10 ⁻⁶	
150	0.164	4.21×10 ⁻⁶	
180	0.176	4.51×10 ⁻⁶	
210	0.188	4.82×10 ⁻⁶	
240	0.199	5.11×10 ⁻⁶	
270	0.209	5.36×10 ⁻⁶	
300	0.219	5.62×10 ⁻⁶	2.57×10 ⁻⁸
330	0.231	5.89×10 ⁻⁶	
360	0.24	6.15×10 ⁻⁶	
390	0.252	6.41×10 ⁻⁶	
420	0.261	6.67×10 ⁻⁶	
450	0.269	6.89×10 ⁻⁶	
480	0.278	7.15×10 ⁻⁶	
510	0.289	7.38×10 ⁻⁶	
540	0.297	7.62×10 ⁻⁶	
570	0.305	7.82×10 ⁻⁶	
600	0.314	8.05×10^{-6}	

Nanomaterials	Substrates	$K_{\rm m}$ (mM)	$V_{\rm max} (10^{-8}{ m M}\cdot{ m s}^{-1})$	Refs.
Fe ₃ O ₄ MNPs ¹	TMB	0.098	3.44	1
	H_2O_2	154	9.78	
HRP	TMB	0.434	10.00	1
	H_2O_2	3.7	8.71	
IrO_2/rGO^2	TMB	0.276	42.77	2
	H_2O_2	229.4	372.9	
MA-Hem/Au-Ag ³	TMB	2.39	1.42	3
	H_2O_2	2.71	11.4	
Cu NCs	TMB	0.648	5.96	4
	H_2O_2	29.16	4.22	
Cu-Fe MNPs	ТМВ	0.013	3.01	This work
	H ₂ O ₂	56.58	4.12	

 Table S2. Comparing the steady-state kinetic parameters of the present Cu-Fe MNPs

 with other nanomaterials-based peroxidase mimics reported previously

1. Fe₃O₄ MNPs: Fe₃O₄ magnetic nanoparticles

2. $IrO_2/rGO: IrO_2$ nano-particles on reduced graphene oxide (rGO) nanosheets

3. MA-Hem/Au-Ag: gold-silver bimetals into Hemin(Hem)-coupled melamine (MA) polymer matrix

Materials	Method	Analytes	Linear	LOD	Refs.
			range (µM)	(µM)	
GNP-modified ITO	dual-channel	o-AP	1-500	0.41	5
microelectrodes1	microchip				
	electrophoresis				
	gas	o-AP		23.48	6
	chromatography				
cationic p-(quaternary	capillary	o-AP		2.64	7
ammonium) calix[4]-arene	electrophoresis				
SPCE ²	Electrochemical	o-AP	0.2-100	0.07	8
NH ₂ -SBA-15/CPE ³	Electrochemical	o-AP	0.3-18	0.05	9
Ce-CDs ⁴	Fluorescent	o-AP	0.1-10	0.033	10
modified PDMS microchip ⁵	microchips	o-AP	50-400	10.0	11
Triethylamine (pH 8)	Liquid	o-AP	9.17-450	4.22	12
	chromatography				
Cu-Fe MNPs	Colorimetry	o-AP	0.33-12.67	0.016	This work

Table S3. Comparing the determination of o-AP by Cu-Fe MNPs with other

nanomaterials reported previously

1, GNP-modified ITO microelectrodes: A gold nanoparticle-modified indium tin oxide microelectrode

2, SPCE: Electrochemically pretreated screen-printed carbon electrodes.

3 NH₂-SBA15/CPE: Amino-functionalized SBA15 modified carbon paste electrode

4、 Ce-CDs: Ceriumdoped carbon dots

5 modified PDMS microchip: Modified poly (dimethylsiloxane) (PDMS)microchips

Table S4. Comparing the determination of GSH by Cu-Fe MNPs with other

nanomaterials reported previously

Materials	Method	Analytes	Linear range	LOD	Refs.
			(µM)	(µM)	
MCE-CL ¹	microchip	GSH	3-600	0.96	13
	electrophoresis				
Cy-AuNCs ²	colorimetric	GSH	0-400	10.00	14
Met-AuNCs@MnO ₂ ³	Fluorescent	GSH	1-700	0.068	15
AgNPs	colorimetric	GSH	0-400	4.11	16
TCFCl-GSH ⁴	Fluorescent	GSH	0-500	0.45	17
Cu-Fe MNPs	Colorimetry	GSH	0.66-21.67	0.033	This work

1、 MCE-CL: microchip electrophoresis chemiluminescence

- 2、 Cy-AuNCs: Cytidine-Au nanoclusters
- 3、 Met-AuNCs@MnO₂: methionine-capped AuNCs and MnO₂
- 4、TCFCl-GSH: Long-wavelength TCF-based fluorescence probes

References:

- L. Z. Gao, J. Zhuang, L. Nie, J. B. Zhang, Y. Zhang, N. Gu, T. H. Wang, J. Feng, D. L. Yang, S. Perrett and X. Yan, *Nat. Nanotechnol.*, 2007, 2, 577-583.
- 2. X. L. Liu, X. H. Wang, Q. S. Han, C. Qi, C. Wang and R. Yang, *Talanta*, 2019, **203**, 227-234.
- 3. H. Liu, Y. Hua, Y. Y. Cai, L. P. Feng, S. Li and H. Wang, *Anal. Chim. Acta*, 2019, **1092**, 57-65.
- 4. L. Hu, Y. Yuan, L. Zhang, J. Zhao, S. Majeed and G. Xu, *Anal. Chim. Acta*, 2013, **762**, 83-86.
- 5. G. Z. Zhu, Q. H. Song, W. F. Liu, X. X. Yan, J. Xiao and C. P. Chen, *Anal. Methods*, 2017, **9**, 4319-4326.
- 6. A. Kumar and A. Panwar, *Microchim. Acta*, 1993, **111**, 177-182.
- 7. W. C. Yang, X. D. Yu, A. M. Yu and H. Y. Chen, *J. chromatography. A*, 2001, **910**, 311-318.
- 8. W. Y. Su, S. M. Wang and S. H. Cheng, J. Electroanal. Chem., 2011, 651, 166-172.
- 9. S. Duan, X. Zhang, S. Xu and C. L. Zhou, *Electrochim. Acta*, 2013, **88**, 885-891.
- 10. D. D. Zhao, Y. J. Huang, B. F. Shi, S. P. Li and S. L. Zhao, *ACS Sustain. Chem. Eng.*, 2021, **9**, 8136-8141.
- 11. Y. Xiao, K. Wang, X.-D. Yu, J.-J. Xu and H.-Y. Chen, *Talanta*, 2007, **72**, 1316-1321.
- 12. S. P. Wang and T. H. Huang, *Anal. Chim. Acta*, 2005, **534**, 207-214.
- 13. M. Shi, Y. Huang, J. J. Zhao, S. T. Li, R. J. Liu and S. L. Zhao, *Talanta*, 2018, **179**, 466-471.

- 14. C. F. Jiang, C. Zhang, J. Song, X. J. Ji and W. Wang, *Spectrochim. Acta, Part A*, 2021, **250**, 119316.
- 15. F. M. Sang, M. L. Li, S. Y. Yin, H. H. Shi, Y. Zhao and Z. Z. Zhang, *Spectrochim. Acta, Part A*, 2021, **256**, 119743.
- 16. I. Sanskriti and K. K. Upadhyay, New J. Chem., 2017, **41**, 4316-4321.
- 17. A. C. Sedgwick, J. E. Gardiner, G. Kim, M. Yevglevskis, M. D. Lloyd, A. T. A. Jenkins, S. D. Bull, J. Yoon and T. D. James, *Chem. Commun.*, 2018, **54**, 4786-4789.