Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

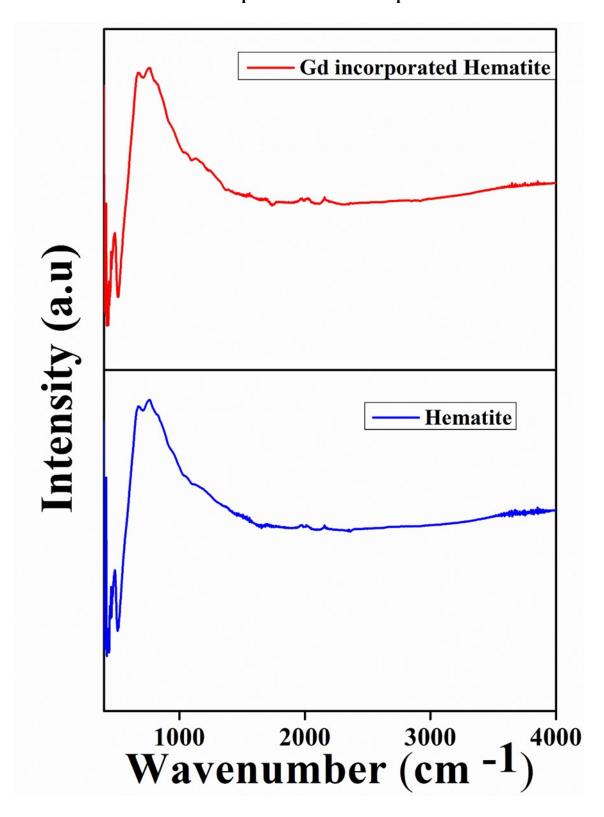
Supporting Information

Water flow and finger-tapping mediated piezoelectric energy generation using natural hematite-based flexible PVDF-HFP membrane

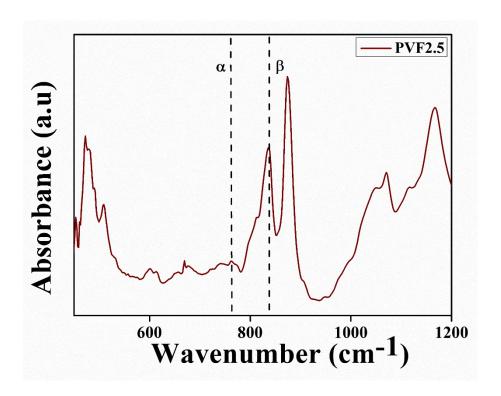
Saheli Ghosh¹, Dhananjay Mondal¹, Shubham Roy², Jhilik Roy^{1,3}, Souravi Bardhan⁴, Ayan Mazumder¹, Neelanjana Bag¹, Ruma Basu³, Sukhen Das^{1*}

¹ Department of Physics, Jadavpur University, Kolkata-700032, India

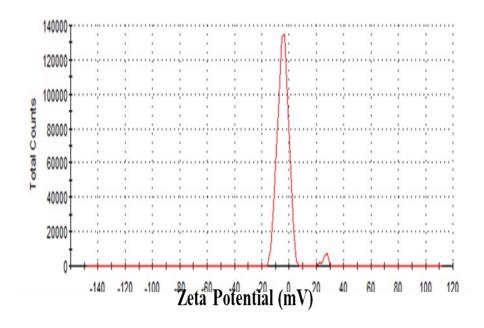
² Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, and School of Science, Harbin Institute of Technology, Shenzhen 518055, China.

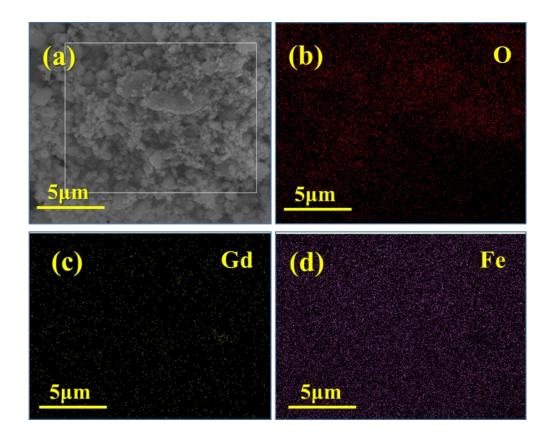

³ Department of Physics, Jogamaya Devi College, Kolkata-700026, India
⁴ Department of Environmental Science, Netaji Nagar College for Women, Kolkata-700092, India

*Corresponding Author:


Prof. Sukhen Das

sdasphysics@gmail.com (+91 9433091337)


S1: FTIR of Hematite and Gd incorporated hematite nanoparticles


S2: FTIR of 2.5% hematite doped PVDF membrane

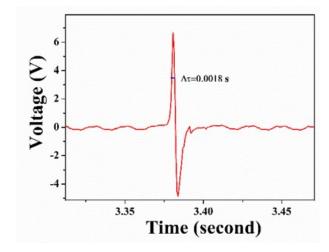
S3: Zeta Potential of natural α-hematite

S4: FESEM of Gd incorporated α -hematite (a) and mapping (b-d) of PVGF2.5 membrane suggesting the homogeneous distribution of doped Gd incorporated in α -hematite

S5: Formulation of force calculation:

The velocity has been calculated from the relation of conservation of energy,

$$mgh = \frac{1}{2} mv^2$$
....(1)

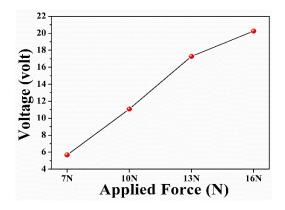

where m is the mass, g is the gravitational constant, h is the height from where the mass departed on the membrane, and v is the velocity.

Secondly,

$$mv = (F-mg) \Delta t....(2)$$

$$F = m (v/\Delta t + g)....(3)$$

Initially, applying the mass 0.016 kg, h 0.1 m, and Δt is the impulsive time calculated from the open circuit voltage graph (FWHM) and found Δt = 0.0018s.


From equation 3 we have calculated the force and found 13.49 N.

The force has been varied by applying different masses.

S6: Formulation of force calculation:

Sample	d ₃₃	Avg.	Std.				
Type							Deviation
PVGF0	4.15	4.74	4.92	5.12	4.81	4.748	0.363827
PVGF2.5	49.7	47.44	45.8	48.29	45.39	47.324	1.778688
PVGF5	25.07	27.83	28.52	26.54	27.29	27.05	1.323575

S7: Force-dependent voltage generation for PVGF2.5

S8: Water flow-mediated energy generation and detail setup

PVGF2.5_Energy generation.mp4