Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

## Supporting Information

## Gas-Sensing Performance of Core-shell SnO<sub>2</sub>-based Chemiresistive

## MEMS Sensor for H<sub>2</sub>S Detection under Vacuum

Wenbo Pi<sup>a, ‡</sup>, Xi Chen<sup>a,‡</sup>, Qiuyun Fu<sup>a</sup>, Zixiao Lu<sup>b</sup>, Honglang Li<sup>b</sup>, Zaiqi Tang<sup>c</sup>, and Wei Luo\*,<sup>a,d</sup>

<sup>a</sup>School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, PR China
<sup>b</sup>CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China
<sup>c</sup>Sysmo Technologies Co., LTD, Beijing 100020, PR China
<sup>d</sup>Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518000, PR China.
<sup>\*</sup>These authors contributed equally to this work.
\*E-mail: luowei@mail.hust.edu.cn Characterization of silver interdigital electrode  $SnO_2$  gas sensor after introducing  $H_2S$  gas.

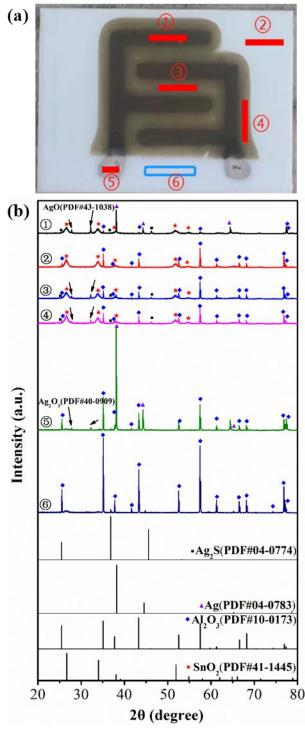



Figure S1. (a) Photo of the silver interdigital electrode  $SnO_2$  gas sensor after introducing  $H_2S$  gas at ambient temperature and pressure, (b) Micro-area XRD pattern of the silver interdigital electrode  $SnO_2$  gas sensor exposed to  $H_2S$  gas.

When 1 ppm of  $H_2S$  gas was introduced to the  $SnO_2$  gas sensor through the silver interdigital electrode, an exponential decrease in the resistance of the  $SnO_2$  gas sensor was observed. It is noteworthy that after the gas sensing reaction, the  $SnO_2$  sensitive

film above and around the silver interdigital electrode of the gas sensor turned brownish-yellow, while the color of the SnO<sub>2</sub> sensitive film away from the silver interdigital electrode remained unchanged, as shown in Figure S1(a). The phase composition of each part of the silver interdigital electrode SnO<sub>2</sub> gas sensor exposed to H<sub>2</sub>S was studied using a micro-area X-ray diffractometer, and the XRD spectrum is shown in Figure S1. The results showed that there were small amounts of Ag<sub>2</sub>O and Ag<sub>2</sub>S around the Ag electrode, which implied that there were two possible processes for this gas-sensitive reaction: one is the direct reaction between Ag and H<sub>2</sub>S gas to generate Ag<sub>2</sub>S, another is the reaction between the Ag<sub>2</sub>O and H<sub>2</sub>S. Both gas-sensitive processes are expected to be applied in the detection of H<sub>2</sub>S under low-temperature and high-vacuum conditions.

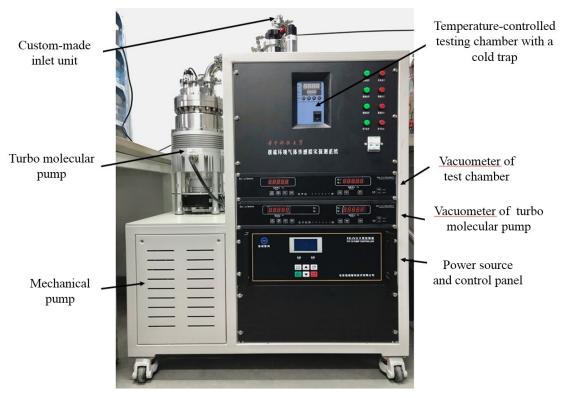



Figure S2. Gas sensor test system under low temperature and high vacuum

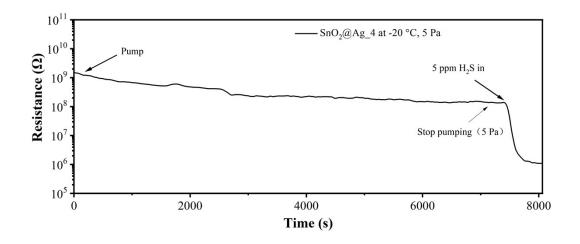



Figure S3. The response curve of SnO<sub>2</sub>@4Ag gas sensor to 5 ppm H<sub>2</sub>S in a low-temperature and low-vacuum condition (-20 °C, 5 Pa)

Then,  $SnO_2@4Ag$  gas sensor was tested for its gas sensing performance towards 5 ppm of H<sub>2</sub>S gas in a low-temperature and low-vacuum test system (-20 °C, 5 Pa). The experimental results, as shown in Figure S3, indicated that upon injecting 5 ppm of H<sub>2</sub>S gas into the system, the resistance of the  $SnO_2@4Ag$  gas sensor immediately decreased, and the response value reached above 100, indicating its capability of detecting H<sub>2</sub>S gas in such a low-temperature and low-vacuum environment (-20 °C, 5 Pa).

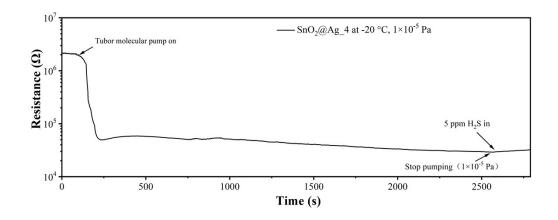



Figure S4. The response curve of SnO<sub>2</sub>@Ag\_4 gas sensor to 5 ppm H<sub>2</sub>S in a low-temperature and high-vacuum condition (-20 °C,  $1 \times 10^{-5}$  Pa)

As shown in Figure S4, upon injecting 5 ppm of  $H_2S$  gas into the test system (-20 °C,  $1 \times 10^{-5}$  Pa), the SnO<sub>2</sub>@Ag\_4 gas sensor showed no response, and its resistance only had a slightly increasing trend, which was completely different from the experimental phenomenon observed under low-temperature and low-vacuum conditions.

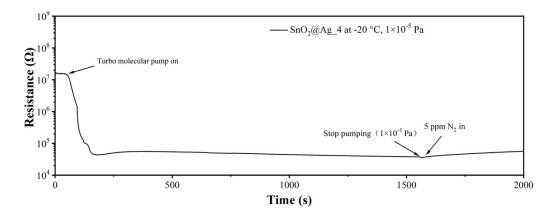



Figure S5. The response curve of SnO<sub>2</sub>@Ag\_4 gas sensor to 5 ppm N<sub>2</sub> in a low-temperature and high-vacuum condition (-20 °C,  $1 \times 10^{-5}$  Pa)

As shown in Figure S5, upon introducing an equal amount of  $N_2$ , the resistance of the sensor also showed a slightly increasing trend, which was consistent with the experimental phenomenon observed in Figure S4. This indicates that under high-vacuum conditions, SnO<sub>2</sub> and Ag did not react with H<sub>2</sub>S.

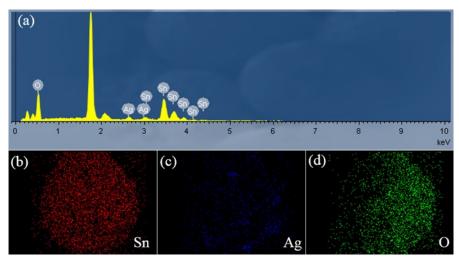



Figure S6. (a) EDS spectra, and (b-d) elemental mapping of  $SnO_2@Ag_2O_2$ 

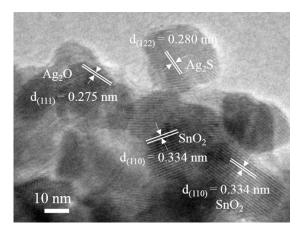



Figure S7. High-resolution TEM image of SnO\_2@Ag\_O\_2 after exposure to  $\rm H_2S$ 

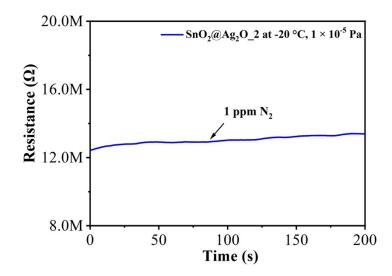



Figure S8. Gas sensing response curve of  $SnO_2@Ag_2O_2$  gas sensor towards with 0.4 mL  $N_2$ 

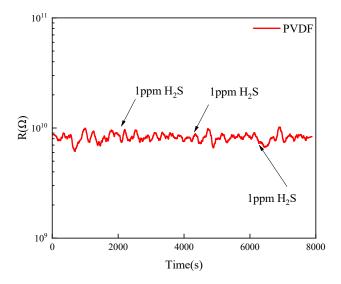



Figure S9 The PVDF for  $H_2S$  gas detection under vacuum  $(1 \times 10^{-5} \text{ Pa})$ .

| Table 1 |
|---------|
|---------|

| Method                  | Spacecraft<br>Model         | Mass<br>(kg) | Power<br>(W) | Size<br>(cm × cm ×<br>cm) | Sensitivity and<br>Limitation                                                                                                                         |
|-------------------------|-----------------------------|--------------|--------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mass<br>Spectrometry    | Phoenix Mars<br>Lander[1]   | 5.7          | 13           | 24 × 23× 18               | 0.7 to 4, 7–35, 14–70 and<br>28–140 amu;H <sub>2</sub> O,<br>CO <sub>2</sub> , H <sub>2</sub> , O <sub>2</sub> , NH <sub>3</sub> ,<br>SO <sub>2</sub> |
|                         | Huygens[2]                  | 17.3         | 28           | $\Phi 19.8 \times 47$     | $2\sim141$ amu                                                                                                                                        |
|                         | Pioneer Venus<br>project[3] | 3.81         | 12           | $\Phi 0.2 	imes 7.5$      | 1-64 amu; CO CO <sub>2</sub> N <sub>2</sub>                                                                                                           |
| Visible<br>Spectrometer | LADEE[4]                    | 3.6          | 13           | -                         | Mean noise-equivalent<br>power ~45 R/nm                                                                                                               |
| Our method              |                             | <10g         | <1 W         | 0.5                       | H <sub>2</sub> S, 100 pb                                                                                                                              |

1. Journal of the American Society for Mass Spectrometry Volume 19, Issue 10, October 2008, Pages 1377-1383

2. Niemann, H. B., Atreya, S. K., Bauer, S. J., et al. (2003). The gas chromatograph mass spectrometer for the Huygens probe. In The Cassini-Huygens Mission (pp. 553-591). Dordrecht: Springer Netherlands

3. Hoffman, J. H., Hodges, R. R., Wright, W. W., et al. (1980). Pioneer Venus sounder probe neutral gas mass spectrometer. IEEE Transactions on Geoscience and Remote Sensing, 18(1), 80-84.

4. Elphic, R.C. et al. (2015). The Lunar Atmosphere and Dust Environment Explorer Mission. In: Elphic, R., Russell, C. (eds) The Lunar Atmosphere and Dust Environment Explorer Mission (LADEE). Springer, Cham. Space Science Reviews