Supporting Information

Beyond cadmium yellow: CdS photonic crystal pigments with vivid structural colors

Wuke Wei^{#a}, Chengcai Wu^{#a}, Qianyao Fang^a, Zhongwen Zhao^a and Xin Su^{*a}

School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.

Table S1. Recipes for preparing monodisperse CdS spheres with various diameters

$Cd(NO_3)_2 \cdot 4H_2O(g)$	TU (g)	PVP (g)	DEG (mL)	Diameter (nm)
11.72	2.89	5	360	150
12.34	3.04	5	360	170
12.96	3.20	5	360	200
13.57	3.35	5	360	220

Figure S1. SEM images of monodisperse CdS spheres with different diameters: (a) 150 nm; (b) 170 nm; (c) 200 nm; (d) 220 nm; (e) XRD patterns of CdS spheres

thickness (nm)	
5	
10	
15	
20	

Table S2. Relations of shell thickness versus reaction time

Figure S2. SEM images of monodisperse $CdS@SiO_2$ core-shell spheres with 220 nm CdS as cores and various SiO_2 shell thickness: (a) 5 nm; (b) 10 nm; (c) 15 nm; (d) 20 nm; (e) peak intensity of extinction spectra of CdS@SiO_2 spheres at 480 nm with various shell thickness dispersed into HCl solution for different durations; (f) extinction spectra of 260 nm CdS@SiO_2 spheres (20 nm shell thickness) dispersed in HCl solution for different durations

Figure S3. Digital photographs of CdS@SiO₂ spheres with various shell thickness dispersed in HCl solution for different durations: (a,e) 5 nm; (b,f) 10 nm; (c,g) 15 nm; (d,h) 20 nm; (a~d) 0 h; (e~h) 3h

Spheres	Diameter (nm)	Zeta potential (mV)
	170	-29.6
CdS	200	-30.7
	220	-29.6
	210	-45.7
$CdS@SiO_2$	240	-44.8
	260	-44.9

Table S3. Zeta potential of CdS and CdS@SiO2 spheres with various diameters

Figure S4. (a) Optical image of a CdS PC ball; (b~d) SEM images of a CdS PC ball with different magnification times

Figure S5. XRD patterns of CdS@SiO₂ spheres with different diameters and identical 20 nm SiO₂ shells

Figure S6. Size distribution of CdS@SiO₂ core-shell spheres with various diameters: (a) 210 nm; (b) 240 nm; (c) 260 nm 4

D _{core} (nm)	D _{core-shell} (nm)	Theoretical peaks (nm)	Measures peaks (nm)
170	210	639	524
200	240	746	578
220	260	817	680

Table S4. Theoretical and measured reflection peaks of CdS@SiO₂ PC balls

The theoretical reflection peak positions can be calculated based on Bragg diffraction equation (1).

$$\lambda = 2d\sqrt{n_{eff}^2 - sin^2\theta} \tag{1}$$

$$d = \sqrt{\frac{2}{3}}D \tag{2}$$

$$n_{eff}^2 = f_{sphere} n_{sphere}^2 + f_{air} n_{air}^2 \quad (3)$$

In these three equations, d is the distance between two neighboring crystalline planes in the (111) direction for a face-centered cubic (fcc) close-packed structure, and its relation with the sphere diameter D is shown in eqn (2). The effective refractive index (n_{eff}) can be approximated according to eqn (3). The incident angle θ is 0° for all samples. n_{sphere} and n_{air} stand for the refractive index of building blocks and air (n=1.00). In a fcc structure, the fill ratios of spheres (f_{sphere}) and air (f_{air}) are 0.74 and 0.26, respectively. Herein, as the building blocks are actually core-shell composite spheres, their effective refractive index can be approximated by the following equation (4). The refractive index of CdS cores and SiO₂ shells are 2.51 and 1.46, respectively. Based on the above data, the theoretical reflection peak positions can be calculated and summarized in Table S4."

$$n_{sphere}^{2} = \frac{R_{core}^{3}}{R_{core-shell}^{3}} * n_{core}^{2} + \left(1 - \frac{R_{core}^{3}}{R_{core-shell}^{3}}\right) * n_{shell}^{2}$$
(4)

Figure S7. (a) The plot of PC ball diameter as a function of flow rate of oil phase; The flow rate and mass fraction of water phase is 1 mL/h and 5%, respectively. (b) the plot of PC ball diameter as a function of flow rate of water phase; The flow rate of oil phase and mass fraction of water phase is 50 mL/h and 5%, respectively. (c) the plot of PC ball diameter as a function of mass fraction of CdS@SiO₂ spheres in water phase; The flow rate of oil phase and water phase is 50 mL/h, respectively.

Figure S8. SEM images of PC balls with various sizes using 260 nm CdS@SiO₂ spheres as building blocks: (a-c) 80 μm; (d-f) 150 μm; (g-i) 340 μm

Figure S9. (a,b) TEM images of CdS spheres; (c) HR-TEM image of a CdS sphere showing the nanocrystalline domain with PVP capped onto the surface of a nanocrystal; (d) selected area electron diffraction image of a CdS sphere showing the polycrystalline nature

Figure S10. FTIR spectra of PVP, CdS spheres, CdS@SiO₂ spheres before and after calcination

Figure S11. Reflection spectra of CdS@SiO₂ PC balls annealed at various temperatures

Figure S12. Digital photographs of (a) $CdS@SiO_2$ spheres annealed at 400 °C for 2 h; (b) annealed $CdS@SiO_2$ spheres dispersed into the mixtures of concentrated hydrochloric acid and HF acid; (c) harvested etched products; (d) dried etched products; (e) Raman spectrum of d

Figure S13. XRD patterns of CdS@SiO2 PC balls calcined at different temperatures for 2 h

Figure S14. Digital photographs of PC pigments with 210 nm CdS@SiO₂ spheres as building blocks calcined at 400 °C for various durations: (a) 0.5 h; (b) 1 h; (c) 2 h; (d) 4 h; (e) 6 h; (f) 8 h

Figure S15. Digital photographs of CdS@SiO₂ PC balls and PC pigments shown in Figure 5 taken at a tilted observation direction, indicating angle-independent structural colors of CdS@SiO₂ PC pigments

Figure S16. Angle-dependent reflection spectra of CdS@SiO₂ PC pigments: (a) green pigments; (b) yellow pigments; (c) red pigments

Figure S17. Digital photographs of a red leaf painting (a,b) soaked in acid solution (pH=2) and basic solution (pH=12) for 2 h; (c) brushed and (d) rubbed for 100 times