Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

Gate-Tunable Rectification and Photoresponse in a MoTe₂/SnS₂ Van der Waals Heterostructure P-N Diode.

Ehsan Elahi^{1*}, Muhammad Asghar Khan¹, Jaeho Jeon¹, Sahng-Kyoon Jerng¹, Abdullah A.

Al-Kahtani², Hwayong Noh^{1*}

¹Department of Physics & Astronomy, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul, 05006 South Korea

²Chemistry Department, Collage of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia

**Corresponding author e-mail:* (Ehsan Elahi) <u>*Eh*</u>

Ehsanelahi@sju.ac.kr

(Hawayong Noh) <u>hnoh@sejong.ac.kr</u>

Figure S1: (a) Raman spectroscopy of MoTe₂. (b) Raman spectroscopy of SnS₂ flake. Two peaks can be seen in the Raman spectra of MoTe₂ at 173.33 cm⁻¹, 233.10 cm⁻¹, respectively. These peaks correspond to the out-of-plane vibrational mode A_{1g} and the in-plane vibrational mode E^{1}_{2g} , and the A_{1g} mode at 313.7 cm⁻¹ corresponds to SnS₂.

We have evaluated approximately the band alignment of two materials $MoTe_2$ and SnS_2 by XPS. The peak positions are given as

Sn 3d5/2 = 486.281 eV,	Sn 3d3/2 = 494.704 eV
S 2p3/2 = 161.318 eV,	S 2p1/2 = 162.491 eV
Mo 3p5/2 = 228.247 eV,	Te 3d5/2 = 572.870 eV
Mo 3p3/2 = 231.397 eV.	Te 3d3/2 = 583.262 eV

The approximate valence band offset (VBO) of $MoTe_2$ -SnS₂ is calculated using the energy difference among the core levels relative to the respective VBM of $MoTe_2$ and SnS₂. Hence the VBO of MoTe-SnS₂ can be evaluated by the formula [1].

$$\Delta \mathbf{E_v} = \text{Energy of MO3d}_{5/2} - \text{VBM}_{\text{MoTe2}} + (\text{Energy of Sn3d}_{5/2}\text{-} \text{Energy of Mo3d}_{5/2}\text{-} (\text{Energy of Sn3d}_{5/2}\text{-} \text{VBM}_{\text{SnS2}})$$

$$= 228.24 - 0.10 + (486.28 - 228.24) - (486.28 - 1.53) \approx 1.43 \text{ eV}$$

Based on VBO approximate data attained by XPS, we have calculated the conduction band offset (CBO) of MoT_2 -SnS₂ by the following formula:

$$\Delta E_{C} = E_{gMoTe2} - \Delta E_{v} - E_{gSnS2}$$

$$\Delta E_{C} = 1.10 \text{eV} + 1.43 - 2.28 \approx 0.25 \text{eV}$$

Figure S2: The distance between VBM and Mo $3d_{5/2}$ for MoTe₂, the distance between, VBM and Sn $3d_{5/2}$. (b) Band arrangement of MoTe₂-SnS₂ heterojunction.

Figure S3: (a) I-V characteristics of MoTe₂ at various back gate voltages. (b) I-V characteristics of SnS₂ at various back gate voltages. (c) Transfer curves of MoTe₂ at V_{ds} =0.5 and 1V. (d) Transfer curves of SnS₂ at V_{ds} =0.5V and 1V.

Ideality factor calculation

The ideality factor was calculated for the forward-biased zone by fitting the logarithmic I-V characteristics to the Shockley diode equation.

$$I_D = I_S \left[exp\left(\frac{qV}{nk_BT}\right) - 1 \right]$$

where I_D represents the diode current, I_S represents the reverse bias saturation current, V denotes the applied voltage, η symbolizes an ideality factor, T signifies temperature, q symbolizes electronic charge, and k_B indicates Boltzmann's constant. For applied voltages larger than k_BT (e.g., > 0.1 V), the term "-1" in the preceding equation can be ignored.

$$\ln (I_D) = \ln (I_S) + \left(\frac{q}{nK_BT}\right)V$$

$$\eta = \frac{1}{Slope} \left(\frac{q}{K_B T} \right)$$

$$\eta = \frac{1}{Slope} \left(\frac{1.6 \times 10^{-16} C}{1.38 \times 10^{-23} J K^{-1} \times 300 K} \right)$$

Slope= 30.82

$$\eta = \frac{38.6}{30.82} = 1.25$$
 at V_{bg}=-30V

Figure S4: Ideality factor calculation at back gate voltage V_{bg} = -30V.

Figure S5: (a) Photocurrent of MoTe₂ with the light (DUV) at V_{bg} =-10V and V_{ds} =0.5V. (b) Photocurrent of MoTe₂ with the light (DUV) at V_{bg} =0V and V_{ds} =0.5V. (c) Photocurrent of MoTe₂ with the light (DUV) at V_{bg} =+10V and V_{ds} =0.5V.

Figure S6: (a) Photocurrent of SnS_2 with the light (DUV) at V_{bg} =-10V and V_{ds} =0.5V. (b) Photocurrent of SnS_2 with the light (DUV) at V_{bg} = 0V and V_{ds} = 0.5V. (c) Photocurrent of SnS_2 with the light (DUV) at V_{bg} = +10V and V_{ds} = 0.5V.

By fitting the data collected using photocurrent, rising and decaying times were identified. **Figure S7** depicts the fitting of rise and decay times.

Figure S7: (a) The rise time for the photocurrent at $V_{ds}=0.9V$. (b) The fall time at $V_{ds}=0.9V$.

References

 Kraut, E., et al., Precise determination of the valence-band edge in x-ray photoemission spectra: application to measurement of semiconductor interface potentials. Physical Review Letters, 1980.
44(24): p. 1620.