Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Conductive hydrogels with core-shell structures to realize super-stretchable, highly sensitive, anti-dehydrating, nonfreezing and self-adhesive capabilities

Wentang Wang^a, Xinyue Deng^a, Jinlong Lu^a, Chunhui Luo^{a,b,c,*}

^a College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, Ningxia 750021,

China, *Corresponding Author. E-mail address: luo@nun.edu.cn (C. Luo).

^b Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North

Minzu University, Yinchuan 750021, Ningxia, China

°Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan

750021, China

Fig. S1. The DLS result (a) and TEM image (b) of micelle-like aggregates.

Fig.S2 FT-IR spectra of PAM gel and C-PAM gel.

Fig.S3 Curve-fitted N1s XPS spectra interior C-PAM hydrogel (a). Curve-fitted C1s (b) and O1s

(c) XPS spectrum interior and surface C-PAM hydrogel.

Fig.S4 C-PAM hydrogel upon stretching.

Fig.S5 Stress-strain curves of PAM hydrogel with different PBA layers.

Fig. S6 100 loading–unloading cycles of the C-PAM hydrogel at a tensile strain of

100%.

Fig.S7 GF of C-PAM hydrogel after storing at ambient conditions for 7 days.

Sample	GF	Strain	Self-	Freeze-	Anti-drying	Reference	
		(%)	adhesion	resistant	property		
C-PAM	6 41	5200	Yes	Yes	84%	This	
	0.41				(after 7 days)	Work	
PEG/CaCl ₂	1.87	400	No	Yes	85%		
					(after 1day)	[1]	
AM/CaCl ₂ /NaBr	3.13	773	No	Yes	70%	[2]	
					(after 7 days)		
PVA/AMY/NaCl	2.55	706	No	Yes	85%	[3]	
					(after 7 days)		
AA/MEA/CMC	3.60	865	No	Yes	76%	F 43	
					(after 15 days)	[4]	
NaSS/APS/TEMED	0.75	1000	No	Yes	~60%	[5]	
					(after 7 days)		

Table S1. Comparison of existing gels in terms of GF, strain, self-adhesion, freeze-resistant, and anti-drying property.

Sodium alginate		• • • •			~85%	5.63
/DMEM/CaCl ₂	4.11	300	Yes	Yes	(after 7 days)	[6]
Clay/MEO ₂ MA/TEMED	2.23	1392	No	Yes	~51%	[7]
					(after 2 days)	

REFERENCES

[1] J. Song, S. Chen, L. Sun, Y. Guo, L. Zhang, S. Wang, H. Xuan, Q. Guan and Z.
 You, *Adv. Mater.*, 2020, 32, e1906994.

- [2] J. Yu, Y. Feng, D. Sun, W. Ren, C. Shao and R. Sun, ACS Appl. Mater. Interfaces, 2022, 14, 10886-10897.
- [3] Y. Gao, Y. Gao, Z. Zhang, Y. Wang, X. Ren, F. Jia and G. Gao, *J. Mater. Chem. C,* 2022, **10**, 12873-12882.
- [4] J. Liu, Z. Chen, Y. Chen, H. U. Rehman, Y. Guo, H. Li and H. Liu, *Adv. Funct. Mater.*, 2021, **31**, 2101464.
- [5] S. Wu, J. Guo, Y. Wang, H. Xie and S. Zhou, ACS Appl. Mater. Interfaces, 2022, 14, 42317-42327.
- [6] X. Zhang, K. Wang, J. Hu, Y. Zhang, Y. Dai and F. Xia, *J. Mater. Chem. A*, 2020,
 8, 25390-25401.
- [7] P. Wei, T. Chen, G. Chen, H. Liu, I. T. Mugaanire, K. Hou and M. Zhu, ACS Appl. Mater. Interfaces, 2020, 12, 3068-3079.